
Prof. Matthias Klingele

Hydrogen Technologies
Lecture 4: Water Electrolysis II



Last lecture…

 Electrolyzer is an electrochemical energy converter
 Converts electrical energy (electrical work) into chemical energy
 Uses voltage to drive an endothermic reaction

 Water splitting reaction is in equilibrium at 1.23 V (standard conditions)
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2𝐻𝐻2𝑂𝑂 2𝐻𝐻2 + 𝑂𝑂2

2𝐻𝐻2𝑂𝑂 → 2𝐻𝐻2 + 𝑂𝑂2

U=1.23 V

U>1.23 V



Goal of this lecture

 How much Hydrogen is produced if we increase from 1.23 V to e.g. 2.0 V?

 Important, because it yields the efficiency of an electrolyzer
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2𝐻𝐻2𝑂𝑂 → 2𝐻𝐻2 + 𝑂𝑂2

U=2 V

???



Lecture Outline
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Hydrogen Production correlates directly to Electron Transfer

 How many H2 molecules per second 
are produced if we meaure 12 
electrons per second?
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H2 O2

4𝐻𝐻+ + 4𝑒𝑒− → 2𝐻𝐻2 2𝐻𝐻2𝑂𝑂 → 𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒−

AnodeCathode Electrolyte

> 1.23 V

12 e-



Hydrogen Production correlates directly to Electron Transfer

 How many H2 molecules per second 
are produced if we measure a current 
of 1 A?
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H2 O2

4𝐻𝐻+ + 4𝑒𝑒− → 2𝐻𝐻2 2𝐻𝐻2𝑂𝑂 → 𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒−

AnodeCathode Electrolyte

2.0 V

1 A

1 Coulomb is the charge of ~ 6.24*1018 electrons



Hydrogen Production correlates directly to Electron Transfer

 How many H2 molecules per second 
are produced if we measure a current 
of 1 A?
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H2 O2

4𝐻𝐻+ + 4𝑒𝑒− → 2𝐻𝐻2 2𝐻𝐻2𝑂𝑂 → 𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒−

AnodeCathode Electrolyte

2.0 V

1 A

1 Coulomb is the charge of ~ 6.24*1018 electrons



Hydrogen Production correlates directly to Electron Transfer

 Correlation of input electrical energy and output Hydrogen is characterized by „Polarization Curve“
 Plot voltage over current density
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𝑈𝑈 (𝑉𝑉)

𝐼𝐼(𝐴𝐴)
1.23 V

2.0 V

1 A

Better

Worse



Electrolyzers are Planar Structures 

 Example PEM („Proton Exchange Membrane“) Electrolyzer
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Proton Exchange Membrane

H2O
H+

O2

e-

H2
Cathode Anode

𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑶𝑶𝟐𝟐 + 𝟒𝟒𝟒𝟒+ + 𝟒𝟒𝒆𝒆−𝟒𝟒𝟒𝟒+ + 𝟒𝟒𝒆𝒆− → 𝟐𝟐𝑯𝑯𝟐𝟐

PEM
IrO2Pt

𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑶𝑶𝟐𝟐 + 𝟐𝟐𝑯𝑯𝟐𝟐



Hydrogen Production correlates directly to Electron Transfer

 Correlation of input electrical energy and output Hydrogen is characterized by „Polarization Curve“
 Plot voltage over current density
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𝑈𝑈 (𝑉𝑉)

𝐼𝐼(𝐴𝐴/𝑐𝑐𝑐𝑐𝑐)
1.23 V

Better

Worse



Hydrogen Production correlates directly to Electron Transfer

 Correlation of input electrical energy and output Hydrogen is characterized by „Polarization Curve“
 Plot voltage over current density

© Hochschule Kempten – University of Applied Sciences, Prof. Matthias Klingele11

𝑈𝑈 (𝑉𝑉)

𝐼𝐼(𝐴𝐴/𝑐𝑐𝑐𝑐𝑐)
1.23 V

Better

Worse

2.0 V

„overpotential“ 𝜂𝜂
(0.77 V)



Hydrogen Production correlates directly to Electron Transfer

 Correlation of input electrical energy and output Hydrogen is characterized by „Polarization Curve“
 Plot voltage over current density
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𝑈𝑈 (𝑉𝑉)

𝐼𝐼(𝐴𝐴/𝑐𝑐𝑐𝑐𝑐)
1.23 V

Better

Worse



Loss Mechanisms of Electrolyzers: Kinetics

 Chemical reactions happen with a finite reaction rate (reaction rate is aka „kinetics“) 

 Overall reaction only as fast as the slower half-cell reaction

 If no other losses: Measured current is proportional to reaction rate!
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2𝐻𝐻2𝑂𝑂 → 2𝐻𝐻2 + 𝑂𝑂2

4𝐻𝐻+ + 4𝑒𝑒− → 2𝐻𝐻22𝐻𝐻2𝑂𝑂 → 𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒−

Happens with reaction finite reaction rate 𝑘𝑘 [1
𝑠𝑠
]

slow fast

Limiting!



Why is the Reaction Rate of Chemicals Finite?

 Chemical reactions need to overcome a reaction barrier (Arrhenius)

 Example water oxidation in Electrolysis:
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𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺
𝐺𝐺 
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸

 (𝐺𝐺
)

𝐻𝐻2𝑂𝑂 1/2 𝑂𝑂2 + 2𝐻𝐻+ + 2𝑒𝑒−

Δ𝐺𝐺

At 1.23 V

Svante Arrhenius
(also first to predict climate change in 1896!)



Why is the Reaction Rate of Chemicals Finite?

 Chemical reactions need to overcome a reaction barrier

 Example water oxidation in Electrolysis:
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𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺
𝐺𝐺 
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸

 (𝐺𝐺
)

𝐻𝐻2𝑂𝑂 1/2 𝑂𝑂2 + 2𝐻𝐻+ + 2𝑒𝑒−

Δ𝐺𝐺

At 1.23 V 𝑘𝑘~𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅Reaction rate forward:

𝑘𝑘~𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅Reaction rate backward:

Current density: 𝚥𝚥 = 𝑗𝑗0 ∗ 𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅 = 𝚥𝚥



Why is the Reaction Rate of Chemicals Finite?

 Chemical reactions need to overcome a reaction barrier

 Example water oxidation in Electrolysis:
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At (1.23 + 𝜂𝜂) V 𝚥𝚥 = 𝑗𝑗0 ∗ 𝑒𝑒
−(Δ𝐺𝐺− 𝛼𝛼∗𝜂𝜂 )

𝑅𝑅𝑅𝑅Reaction rate forward:

𝚥𝚥 = 𝑗𝑗0 ∗ 𝑒𝑒
−(𝜂𝜂+Δ𝐺𝐺−(𝛼𝛼∗𝜂𝜂)

𝑅𝑅𝑅𝑅Reaction rate backward:

Current density: 𝚥𝚥 > 𝚥𝚥

𝐺𝐺

𝜂𝜂

𝛼𝛼 ∗ 𝜂𝜂

Δ𝐺𝐺
Δ𝐺𝐺 − (𝛼𝛼 ∗ 𝜂𝜂)

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒= 𝚥𝚥 − 𝚥𝚥Symmetry coefficient: 0 < 𝛼𝛼 < 1
(fraction of 𝜂𝜂 which can be used for lowering Δ𝐺𝐺)  



Why is the Reaction Rate of Chemicals Finite?

 Chemical reactions need to overcome a reaction barrier

 Example water oxidation in Electrolysis:
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At (1.23 + 𝜂𝜂) V 𝚥𝚥 = 𝑗𝑗0 ∗ 𝑒𝑒
−(Δ𝐺𝐺− 𝛼𝛼∗𝜂𝜂 )

𝑅𝑅𝑅𝑅Reaction rate forward:

𝚥𝚥 = 𝑗𝑗0 ∗ 𝑒𝑒
−(𝜂𝜂+Δ𝐺𝐺−(𝛼𝛼∗𝜂𝜂)

𝑅𝑅𝑅𝑅Reaction rate backward:

Current density: 𝚥𝚥 > 𝚥𝚥

𝐺𝐺

𝜂𝜂

𝛼𝛼 ∗ 𝜂𝜂

Δ𝐺𝐺
Δ𝐺𝐺 − (𝛼𝛼 ∗ 𝜂𝜂)

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒= 𝚥𝚥 − 𝚥𝚥



Correlation of Kinetics with Overpotential: Butler-Volmer 

 The Butler-Volmer Equation correlates reaction rate (kinetics) with overpotential in 
electrochemical cells
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𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂 = 𝑗𝑗0 ∗ 𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅 ∗ (𝑒𝑒

𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅 − 𝑒𝑒

− 1−𝛼𝛼 𝜂𝜂
𝑅𝑅𝑅𝑅 )



Correlation of Kinetics with Overpotential: Butler-Volmer 

 The Butler-Volmer Equation correlates reaction rate (kinetics) with overpotential in 
electrochemical cells
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𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂 = 𝑗𝑗0 ∗ 𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅 ∗ (𝑒𝑒

𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅 − 𝑒𝑒

− 1−𝛼𝛼 𝜂𝜂
𝑅𝑅𝑅𝑅 )

𝜂𝜂

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

𝚥𝚥

𝚥𝚥

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

drawn for 𝛼𝛼 = 0.5



Correlation of Kinetics with Overpotential: Butler-Volmer 

 The Butler-Volmer Equation correlates reaction rate (kinetics) with overpotential in 
electrochemical cells

 Meaning of Butler-Volmer: 
 For low overpotentials, reaction rates are low! 
 For high overpotentials, reaction rates are not limiting anymore!
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𝜂𝜂

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

𝚥𝚥

𝚥𝚥

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

drawn for 𝛼𝛼 = 0.5

Electrolysis: 𝜂𝜂 > 0

2𝐻𝐻2𝑂𝑂 → 𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒−
Slow for low 𝜂𝜂

Fast for big 𝜂𝜂

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂 = 𝑗𝑗0 ∗ 𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅 ∗ (𝑒𝑒

𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅 − 𝑒𝑒

− 1−𝛼𝛼 𝜂𝜂
𝑅𝑅𝑅𝑅 )



Implications of Reaction Kinetics on Polarization Curve

 Low overpotentials and slow reaction kinetics lead to logarithmic losses in the Polarization curve
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𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂 = 𝑗𝑗0 ∗ 𝑒𝑒
−Δ𝐺𝐺
𝑅𝑅𝑅𝑅 ∗ (𝑒𝑒

𝛼𝛼𝛼𝛼
𝑅𝑅𝑅𝑅 − 𝑒𝑒

− 1−𝛼𝛼 𝜂𝜂
𝑅𝑅𝑅𝑅 )

𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

𝜂𝜂

𝜂𝜂 ~ ln(𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒)



Implications of Reaction Kinetics on Polarization Curve

 Low overpotentials and slow reaction kinetics lead to logarithmic losses in the Polarization curve
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𝑈𝑈

𝐼𝐼(~𝐻𝐻2)

Equilibrium potential

Kinetic losses

1.23 V



Implications of Reaction Kinetics on Polarization Curve

 Low overpotentials and slow reaction kinetics lead to logarithmic losses in the Polarization curve
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𝑈𝑈

𝐼𝐼(~𝐻𝐻2)

Equilibrium potential

Kinetic losses

1.23 V

2.0 V

1.0 A 2.0 A



Losses in Electrolyis
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𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑶𝑶𝟐𝟐 + 𝟐𝟐𝑯𝑯𝟐𝟐

Proton Exchange Membrane

H2O
H+

O2

e-

H2
Cathode Anode

𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑶𝑶𝟐𝟐 + 𝟒𝟒𝟒𝟒+ + 𝟒𝟒𝒆𝒆−𝟒𝟒𝟒𝟒+ + 𝟒𝟒𝒆𝒆− → 𝟐𝟐𝑯𝑯𝟐𝟐

PEM
IrO2Pt



Ohmic Losses in Electrolyis

 Protons and electrons are subjected to Ohmic losses
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Proton Exchange Membrane

H2O
H+

O2

e-

H2
Cathode Anode

𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑶𝑶𝟐𝟐 + 𝟒𝟒𝟒𝟒+ + 𝟒𝟒𝒆𝒆−𝟒𝟒𝟒𝟒+ + 𝟒𝟒𝒆𝒆− → 𝟐𝟐𝑯𝑯𝟐𝟐

PEM
IrO2Pt

𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 → 𝑶𝑶𝟐𝟐 + 𝟐𝟐𝑯𝑯𝟐𝟐

𝑅𝑅Ω,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅Ω,+ + 𝑅𝑅Ω,−

𝑅𝑅Ω,+ ≫ 𝑅𝑅Ω,−



Implications of Ohmic losses on Polarization Curve

 Ohmic resistances lead to linear losses in the Polarization curve
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𝑈𝑈

𝐼𝐼(~𝐻𝐻2)

Equilibrium potential

Kinetic losses

1.23 V

Ohmic losses



The Typical Electrolyzer Polarization Curve

 The sum of all losses leads to a characteristic polarization curve (aka „U-I-Kennlinie“)

 Low current densities: 
Dominated by kinetic losses

 High current densities: 
Dominated by Ohmic losses
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𝑈𝑈

𝐼𝐼(~𝐻𝐻2)

Equilibrium potential

Kinetic losses

1.23 V

Ohmic losses

Total losses



Quiz: Example from Reality

 Which electrolyzer works more efficient?

 Which loss mechanism has been improved?
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Klose, Carolin, et al. "All‐hydrocarbon MEA for PEM water electrolysis 
combining low hydrogen crossover and high efficiency." Advanced Energy 
Materials 10.14 (2020): 1903995.

1

2



In Reality

 Lab Scale
 For research purposes
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Bild: Fraunhofer ISE

 Industry Scale
 For making Hydrogen

Bilder: Siemens „Sylizer 300“



Remember SMR
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 High TRL technology

 Capacity of up to 18 tons H2/h



Interesting Questions for Engineers…

 What‘s the Hydrogen production throughput in state-of-the-art electrolyzers?

 How much electrical energy do I need to invest for hydrogen production?

 What‘s the efficiency of an electrolyzer? 

 How does this change with temperature and pressure?
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