

Hydrogen Technologies

Lecture 2: Production of Hydrogen (Overview, SMR, Gasification, Kaverner)

Prof. Matthias Klingele

Repetition

- Hochschule Kempten
 University of Applied Sciences
- Fakultät
 Maschinenbau

- Hydrogen will play a role in reaching climate neutrality.
- We will need a lot of Hydrogen.

Lecture Outline

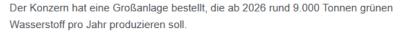
► H₂ production

H₂ storage and logistics

H₂ Utilization

TBA

	1	07.10.2025 S0.13b	HYTECH 1	Hydrogen and Energy transition
\sum	1	07.10.2025 S0.13b	HYTECH 2	Hydrogen Production Overview
	2	14.10.2025 S0.13b	HYTECH 3	Electrolysis - Electrochemistry and Thermodynamics
	2	14.10.2025 S0.13b	HYTECH 4	Electrolysis - Kinetics, U-I-Curve
	3	21.10.2025 S0.13b	HYTECH 5	Tutorial Hydrogen Production
	3	21.10.2025 S0.13b	HYTECH 6	Tutorial Hydrogen Production
	4	28.10.2025 S0.13b	HYTECH 7	Electrolysis - Membrane Materials
L	4	28.10.2025 S0.13b	HYTECH 8	Electrolysis - Catalysis, Electrodes
	5	04.11.2025 S0.13b	HYTECH 9	Hydrogen Storage - Compression, Liquefication
L	5	04.11.2025 S0.13b	HYTECH 10	Hydrogen Storage - Metal Hydrides, LOHCs, Ammonia
	6	11.11.2025 S0.13b	HYTECH 11	Fuel Cells - Introduction
	6	11.11.2025 S0.13b	HYTECH 12	Fuel Cells - Thermodynamics and Polarization
	7	18.11.2025 S0.13b	HYTECH 13	Fuel Cells - Systems
	7	18.11.2025 S0.13b	HYTECH 14	Fuel Cells - Materials
	8	25.11.2025 S0.13b	HYTECH 15	Characterization Methods
	8	25.11.2025 S0.13b	HYTECH 16	Characterization Methods
	9	02.12.2025 S0.13b	HYTECH 17	Tutorial Fuel Cells
	9	02.12.2025 S0.13b	HYTECH 18	Tutorial Fuel Cells
	10	09.12.2025 S0.13b	HYTECH 19	Electrolysis and Fuel Cells: Material Level Degradation
	10	09.12.2025 S0.13b	HYTECH 20	Electrolysis and Fuel Cells: System Level Degradatiion
	11	16.12.2025 S0.13b	HYTECH 21	Power to Liquid
	11	16.12.2025 S0.13b	HYTECH 22	Power to Liquid
	12	23.12.2025 S0.13b	HYTECH 23	Lab-Tour
	12	23.12.2025 S0.13b	HYTECH 24	Lab-Tour
	12	13.01.2026 S0.13b	HYTECH 25	?
	12	13.01.2026 S0.13b	HYTECH 26	?
	13	20.01.2026 S0.13b	HYTECH 27	Repetition und exam preparation
	13	20.01.2026 S0.13b	HYTECH 28	Repetition und exam preparation


The Colours of Hydrogen

<u>Grüner Wasserstoff: Salzgitter AG investiert 100 Millionen</u> <u>Euro</u>

vor 3 Tagen

Blauer Wasserstoff: Wie umweltfreundlich ist er?

Mit Wasserstoff soll die Energiewende gelingen. Doch ob blauer Wasserstoff wirklich zum Klimaschutz beitragen kann, ist umstritten.

07.05.2023

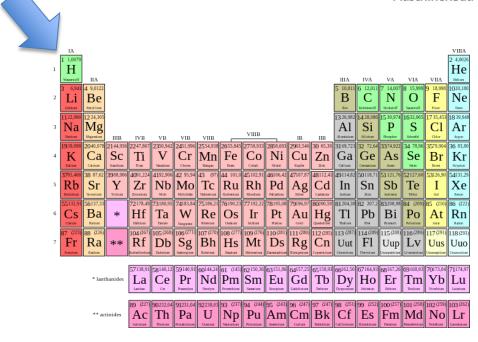
Utopia

Oranger Wasserstoff aus Abfällen: Green Hydrogen Technology setzt neue Maßstäbe

Oranger Wasserstoff aus Abfällen: Green Hydrogen Technology setzt Maßstäbe, wandelt Klärschlamm und Plastik in H2 für Industrie und Verkehr.

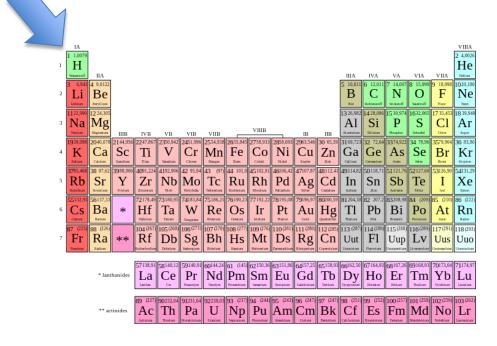
vor 1 Monat

Goals for Lecture 2



Knowledge of:

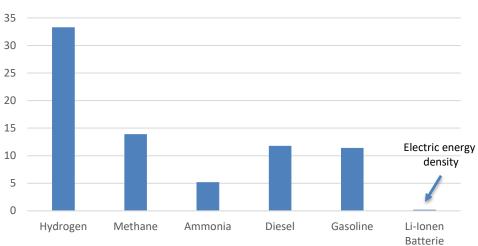
- Key facts about Hydrogen
- Overview: Hydrogen production methods (the colours of hydrogen)


- Hochschule Kempten University of Applied Sciences
- Fakultät
 Maschinenbau

- 1 proton, 1 electron
- Makes up 70 wt% of the universe

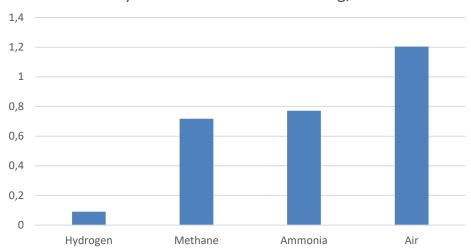
- Hochschule Kempten
 University of Applied Sciences
- Fakultät
 Maschinenbau

- 1 proton, 1 electron
- Makes up 70 wt% of the universe
- Earth: 0.87 wt%

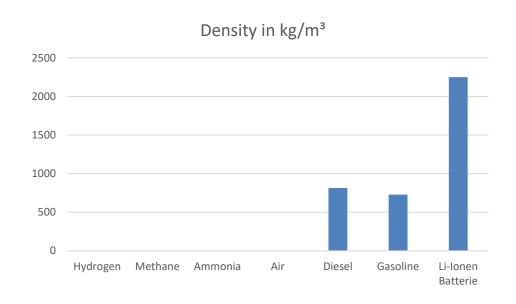


High gravimetric energy density: 33.3 kWh/kg

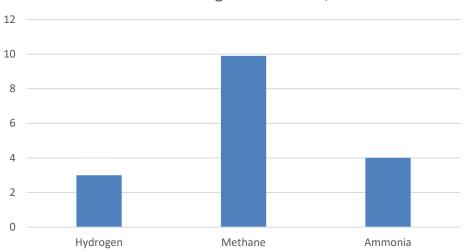
Lower heating value in kWh/kg



- High gravimetric energy density: 33.3 kWh/kg
- Low density at standard conditions: 0.09 kg/m²

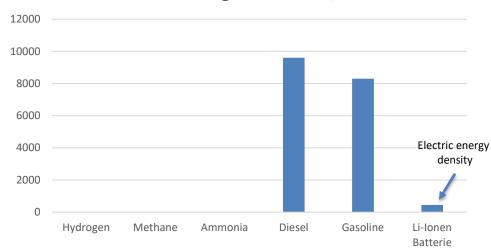

Density at standard conditions in kg/m³

- High gravimetric energy density: 33.3 kWh/kg
- Low density at standard conditions: 0.09 kg/m²



- High gravimetric energy density: 33.3 kWh/kg
- Low density at standard conditions: 0.09 kg/m²
- Low volumetric energy density: 3 kWh/m³

Lower heating value in kWh/m³



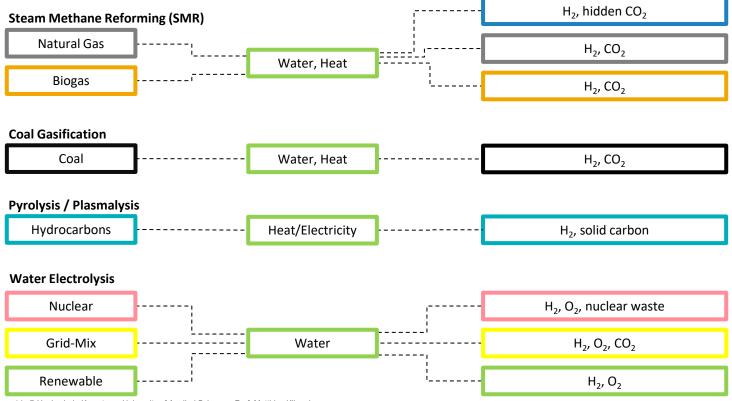
Fakultät Maschinenbau

- High gravimetric energy density: 33.3 kWh/kg
- Low density at standard conditions: 0.09 kg/m²
- Low volumetric energy density: 3 kWh/m³

Compression/densification needed!

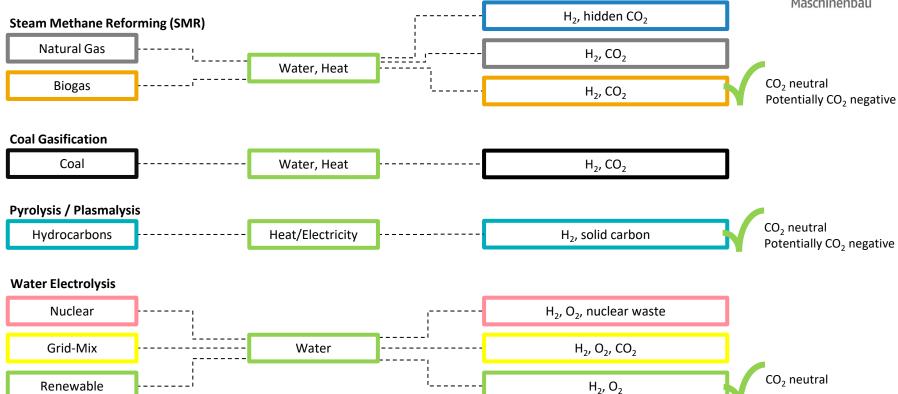
Lower heating value in kWh/m³

Production of Hydrogen (H₂)



- Resources
 - Water
 - Hydrocarbon
 - Both
- Energy source for splitting up the Ressources
 - Heat
 - Electricity
 - Both
- Hydrogen production methods are different combinations of the above...

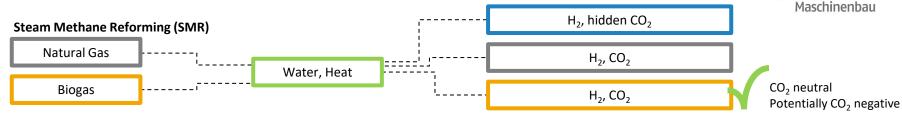
Production of Hydrogen ("Farbenlehre")


^{14 ©} Hochschule Kempten - University of Applied Sciences, Prof. Matthias Klingele

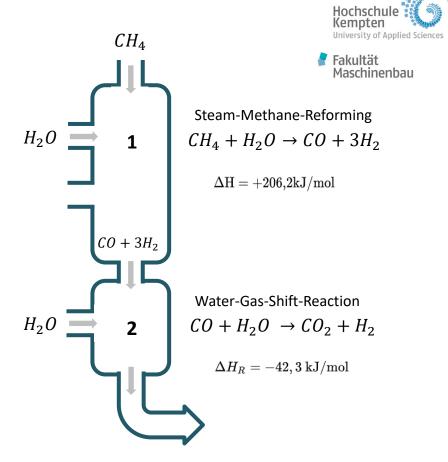
Production of Hydrogen ("Farbenlehre")

15 © Hochschule Kempten - University of Applied Sciences, Prof. Matthias Klingele

White Hydrogen


"Natural" Hydrogen

Steam Methane Reforming (SMR)



Steam-Methane-Reforming (SMR)

- Thermochemical reaction at an heterogeneous catalyst (Nickel)
- 1: Steam-Methane-Reforming
 Endotherm (ca. 800 ° C heat needed)
- 2: Water-Gas-Shift-Reaction (WGS)
 Increases H₂ yield
 Exotherm!

Autothermal SMR

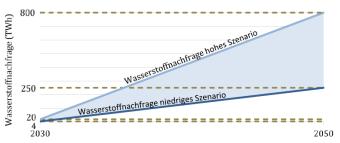
$$\Delta H = +206,2kJ/mol \qquad \Delta H = 0 \ kJ/mol \qquad \Delta H = -71 \ kJ/mol$$
 Steam-Methane-Reforming Reforming Partial Oxidation Hydrogen produced

Real World

Fakultät
Maschinenbau

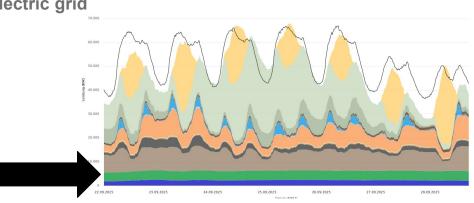
- High TRL technology
- Capacity of up to 18 tons H₂/h

Steam Methane Reforming (SMR)



- Technology is the same as for natural gas (except for additional purification steps)
 - Methane content natural gas: ~ 85 %
 - Methane content Biogas: ~ 50 75 %
- Volumetric efficiency is dependent from methane content and reactor technology
 - From experience: 1 kg H₂ needs ~ 13 kg Biogas
 - H₂-potential in Germany 2019: 1,7 Billion kg (58 TWh)

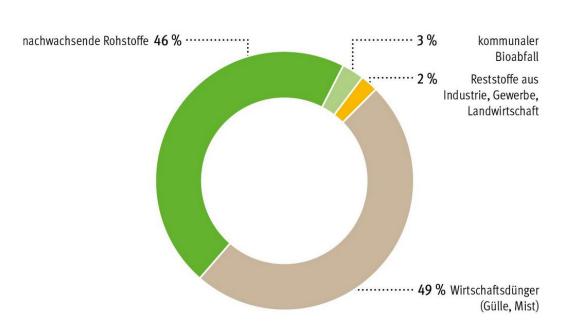
Green Hydrogen demand in Germany per year


Fraunhofer, "Eine Wasserstoff-Roadmap für Deutschland", 2019

- Technology is the same as for natural gas (except for additional purification steps)
 - Methane content natural gas: ~ 85 %
 - Methane content Biogas: ~ 50 75 %
- Volumetric efficiency is dependent from methane content and reactor technology
 - From experience: 1 kg H₂ needs ~ 13 kg Biogas
 - H₂-potential in Germany 2019: 1,7 Billion kg (58 TWh)

Biogas is needed for the decarbonization of the electric grid

- Technology is the same as for natural gas (except for additional purification steps)
 - Methane content natural gas: ~ 85 %
 - Methane content Biogas: ~ 50 75 %
- Volumetric efficiency is dependent from methane content and reactor technology
 - From experience: 1 kg H₂ needs ~ 13 kg Biogas
 - H₂-potential in Germany 2019: 1,7 Billion kg (58 TWh)
- Biogas is needed for the decarbonization of the electric grid
- Regarding energy efficiency, Biogas-Hydrogen would still make sense
 - Only ~ 55 % of produced heat of Biogas-KWK is utilized!


(Rensberg et al., DBFZ REPORT NR. 32, Wärmenutzung von Biogasanlagen)

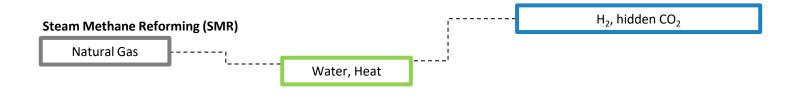
Why not just produce more Biogas?

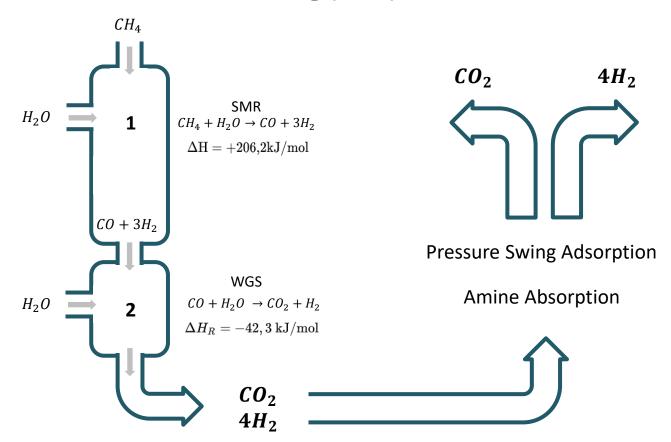
- 46% of the Biogas ressources are planted on purpose!
- More Biogas means more land use
- Example:
 - 1kg H₂ needs ~ 25 m² Corn
 - Commute KE ME: 16.000 km
 - Hydrogen Car: 160 kg H₂
 - 160 * 25 m² = **4000 m²**
- For this reason, government does
 NOT see H₂ from Biogas as "green"

Fachagentur Nachwachsende Rohstoffe e. V., 2021

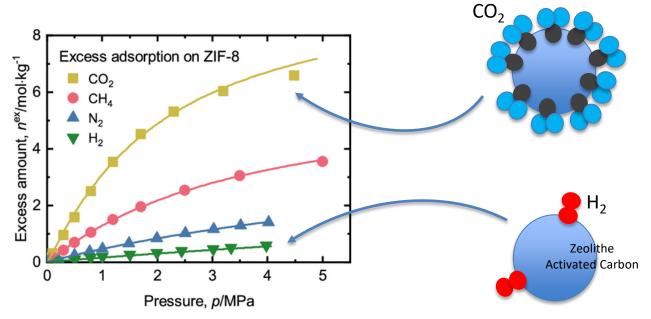
Real world...

Fakultät
Maschinenbau

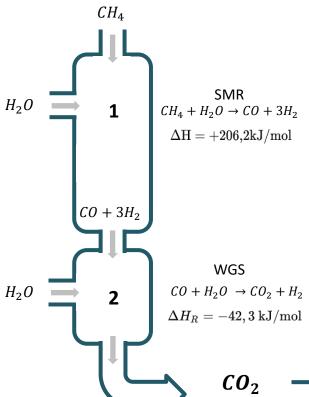

First start-ups are developing, showing demo facilities...

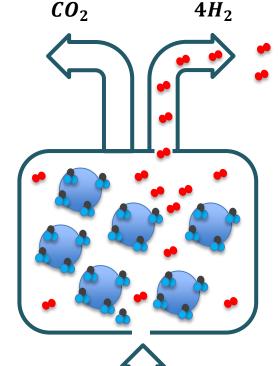

Steam Methane Reforming (SMR) with CCS

Steam Methane Reforming (SMR) with CCS



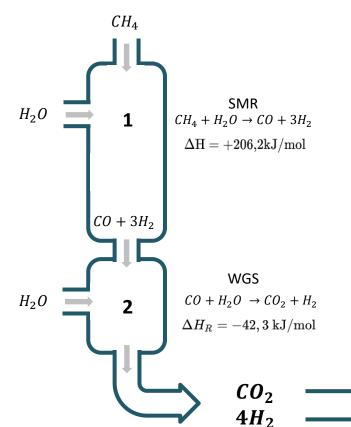
Pressure Swing Adsorption

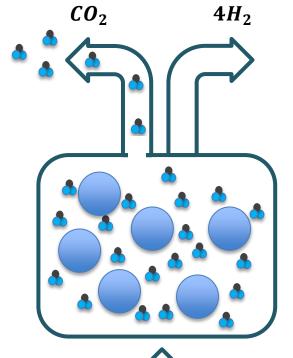




- Relies on the different Langmuir Adsorption Isotherms of CO₂ and H₂
 - Quantifies how much adsorbate can fit on a surface at a given pressure

Pressure Swing Adsorption





- Step 1: High pressure
 - Inlet open
 - H₂ outlet open
 - CO₂ outlet closed
- CO₂ adsorbes
- Pure H₂ is collected

 $4H_2$

Pressure Swing Adsorption

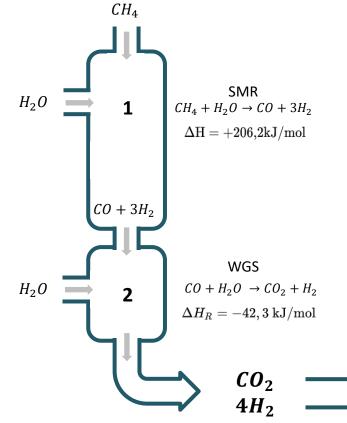
- Step 2: Low pressure
 - Inlet closed
 - H₂ outlet closed
 - CO₂ outlet open
- CO₂ desorbes
- CO₂ is collected

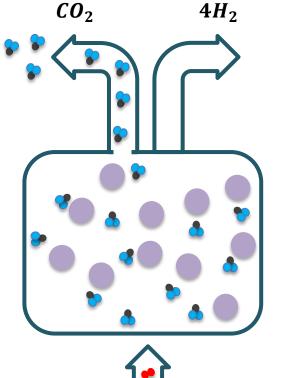
Amine Absorption

- Relies on chemical reaction (chemisorption, absorption) of CO₂ with Amines
 - Amonia, which has 1, 2 or 3 Hydrogen atoms replaced with arylic or alcylic groups

Example: Methylamin
$$H_3C - N$$

■ Reaction:
$$R-NH_2 + CO_2 \rightleftharpoons R-NHCOO^- + H^+$$
 $\Delta H = -85kJ/mol$




CO₂ fixation is exothermal, CO₂ release is endothermal (needs heat!)

Hochschule **Amine Absorption** Kempten CO_2 $4H_2$ University of Applied Sciences CH_4 Fakultät Maschinenbau **SMR** H_2O $CH_4 + H_2O \rightarrow CO + 3H_2$ $\Delta \mathrm{H} = +206,2\mathrm{kJ/mol}$ Step 1: Low Temp Inlet open $CO + 3H_2$ H₂ outlet open CO₂ outlet closed WGS H_2O $CO + H_2O \rightarrow CO_2 + H_2$ CO₂ reacts with amine $\Delta H_R = -42,3 \ \mathrm{kJ/mol}$ Pure H₂ is collected CO_2

 $4H_2$

Amine Absorption

- Step 2: High Temp
 - Inlet closed
 - H₂ outlet closed
 - CO₂ outlet open
- CO₂ desorbes
- Pure CO₂ is collected

Carbon Capture and Storage (Blue Hydrogen)

- Hochschule Kempten
 University of Applied Sciences
- Fakultät
 Maschinenbau

- Self explanatory: Capture CO₂, store it somewhere (underground)
- Would largely solve the energy crisis if it worked

Is almost exclusively promoted by the natural oil and gas industry

Carbon Capture and Storage (Blue Hydrogen)

- Extremely difficult to assess (you can't see slipping gases)
 - Makes it hard to argue against!
- Fact: Geological consequences happen (cracks in the rock formations)
- Fact: Ecological Impact is small if leakage happens
- Fact: Methane is slipping along the production chain with massive climate impact!
 - "Mining" of natural gas
 - Incomplete conversion to hydrogen
- Fact: Carbon capture rates are limited to ~ 90 % (cost reasons)

Coal Gasification

$$\mathrm{C} \, + \, \mathrm{H_2O} \, \longrightarrow \, \mathrm{CO} \, + \, \mathrm{H_2} \qquad \Delta H_R = +131 \, \mathrm{kJ/mol}$$

Production of Hydrogen ("Farbenlehre")

Pyrolysis / Plasmalysis of Hydrocarbons

Kvaerner-Process: Splitting of Hydrocarbons into Hydrogen and Carbon using energy

$$\mathrm{C}_n\mathrm{H}_m \longrightarrow n\mathrm{C} + rac{m}{2}\mathrm{H}_2$$

- No oxygen is involved: No CO₂ emissions! (In contrast to SMR or Coal gasification)
- Carbon "emissions" are solid, and can be stored or recycled
- Potentially CO₂ negative, if biogenic Hydrocarbons are used

Efficiency of Kvaerner Process

Example Methane:

• Kvaerner: $CH_4 \rightarrow C + 2 H_2$ $\Delta H = +74.6 \ kJ/mol$

• SMR: $CH_4 + H_2O \rightarrow CO + 3H_2$ $\Delta H = +206.2 \, kJ/mol$

• Electrolysis $2H_2O \rightarrow 2H_2 + O_2$ $\Delta H = +571.7 \ kJ/mol$

Kvaerner Process can be very efficient!

How can Energy be provided?

Heat

- Example: Molten Zinn Reactor
- Heat can be provided by combustion or electricity

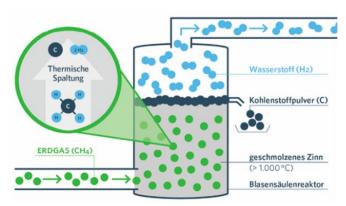
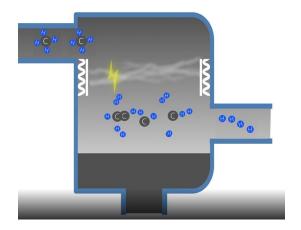
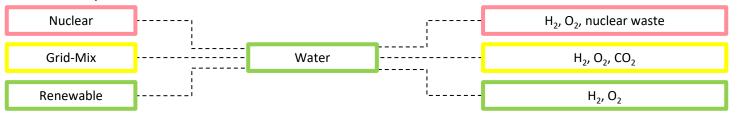


Figure: Gazprom

Plasma

- Example: AC Plasma reactor
- Plasma can be provided by heat or electricity




Figure: Graforce

Next time:

Water Electrolysis

