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Induction, Popper, and machine learning

Bruce Nielson, Daniel C. Elton

Abstract

Francis Bacon popularized the idea that science is based on a process of induction by which repeated
observations are, in some unspecified way, generalized to theories based on the assumption that the future
resembles the past. This idea was criticized by Hume and others as untenable leading to the famous problem
of induction. It wasn’t until the work of Karl Popper that this problem was solved, by demonstrating that
induction is not the basis for science and that the development of scientific knowledge is instead based on the
same principles as biological evolution. Today, machine learning is also taught as being rooted in induction
from big data. Solomonoff induction implemented in an idealized Bayesian agent (Hutter’s AIXI) is widely
discussed and touted as a framework for understanding AI algorithms, even though real-world attempts to
implement something like AIXI suffer immediately encounter fatal problems. In this paper, we contrast
frameworks based on induction with Donald T. Campbell’s universal Darwinism. We show that most AI
algorithms in use today can be understood as using an evolutionary trial and error process searching over a
solution space. In this work we argue that a universal Darwinian framework provides a better foundation for
understanding AI systems. Moreover, at a more meta level the process of development of all AI algorithms
can be understood under the framework of universal Darwinism.

Keywords: Deep learning, artificial intelligence, intelligence, generalization, extrapolation, interpolation,
Occam’s razor, simplicity, critical rationalism, induction, Karl Popper

1. Introduction

Francis Bacon popularized the idea that science
was based on a process of induction by which
repeated observations are generalized to theories.
This idea was criticized by Hume and others as log-
ically untenable, leading to the famous “problem of
induction” whereby science was assumed to utilize
a process that was logically invalid. It wasn’t until
landmark work by Karl Popper that the problem
of induction was resolved. By showing how sci-
ence advances via falsification rather than confir-
mation Popper showed that induction was not the
basis for science. Interestingly, Popper found the
growth of scientific knowledge followed the same
principles as biological evolution, leading to the
field of evolutionary epistemology. Popper claimed
to have refuted the idea that induction provides a
foundation for knowledge. Years later, many sci-
entists still believe some version of induction (for
instance Bayesianism) is the basis for science. Ma-
chine learning is also taught as being rooted in in-
duction. Given the success of machine learning,
does this mean Popper was wrong that induction
is a refuted theory? Vague references towards “in-
ductive learning from data” are often made, with-
out providing a more explicit understanding of how
induction works in machine learning systems. A
more concrete formulation of induction, Solomonoff
induction, however has been proposed as a basis
for AI.[1] More generally, the notion that AI sys-
tems approximate an idealized Bayesian agent has
been quite popular and appears in books such as
Nick Bostrom’s Superintelligence.[2] Solomonoff in-
duction, besides being incomputable and hard to
approximate, suffers from several problems,[3, 4] a
few of which we believe are fatal. A full enumer-
ation and study of these problems is beyond the
scope of this work (and will the subject of future
work), but two particularly fatal issues both arise
from the inability to construct an appropriate prior

Email addresses: brucenielson1@gmail.com (Bruce
Nielson), delton@mgh.harvard.edu (Daniel C. Elton)

beforehand (the “grain of truth” problem and the
“problem of old evidence”).
What about understanding deep learning as

approximating Bayesian statistical modeling?
Bayesian neural networks are increasingly dis-
cussed and conventional neural networks with
dropout have been argued to approximate Bayesian
modeling.[5] We don’t think Bayesian statisti-
cal modeling provides an adequate framework
for understanding deep learning yet alone AI
more generally. Gellman and Yao recently have
elaborated on how Bayesian statistical modeling
suffers from several holes and pitfalls which when
encountered practitioners have to grapple with
solving through a process of trial and error.[6]
After first providing an overview of Universal
Darwinism, in this work we argue that a universal
Darwinian framework provides a better foundation
for understanding AI systems. We discuss how
nearly all AI algorithms, with a few exceptions, can
be understood as operating within the universal
Darwinian frame. Moreover, at a more meta level
the process of development of all AI algorithms
can be understood using a universal Darwinian
framework.

2. Induction vs universal Darwinism

2.1. Francis Bacon and induction

The concept of induction dates as far back as the
15th century and signifies the idea of specific in-
stances being generalized to universal laws. To use
the canonical example, suppose we see a specific
swan S1 and see that it is colored white, or in other
words:

S1 → White (1)

If we later see a bird that is not white, deductive
logic allows us to find that that bird is not S1:

S1 → White

¬White

∴ ¬S1

(2)
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However, deductive logic does not allow us to gen-
eralize from a specific statement like this. The fact
that S1 is white does not allow us to assume that
an S2 - a different swan - will also be colored white.
But what if we see hundreds or even thousands

of swans and all of them are white? Is there some
point at which we can rightly assume that we can
now logically reason that all swans are white? In
other words, is it valid to reason:

S1 . . . S1000 → White

∴ ∀xSx
(3)

The supposed ability to reason from specific
statements to universal statements is the method
of induction. Francis Bacon popularized the idea
that the scientific method was based on this ‘induc-
tive method’ of reasoning from specific statements
to universal statements.
However, Hume pointed out that no matter how

many specific statements we observe, we are never
justified in reasoning to a universal statement.[7]
And, in fact, the discovery of actual black swans
showed that this was the case. This is because it is
logically invalid to ever reason from a specific state-
ment to a universal statement.
This raised the question: if the inductive method

is logically invalid, then how can it be the basis (as
Bacon supposed) for scientific discovery? If Bacon
was correct, would that then imply that science is
‘unjustified’ and therefore no better than myths and
dogmas? These questions soon become known as
‘the problem of induction.’.[7]

2.2. Karl Popper’s solution

Philosopher Karl Popper solved the problem of
induction by reframing the question entirely. Pop-
per threw out the idea that any sort of ‘justifica-
tion’ (in the sense of certainty, near-certainty, or
even just being probable) was possible. Instead, he
believed that the scientific method had nothing to
do with induction and was instead based on a Dar-
winian epistemology (theory of knowledge) where
scientists started with some problem they wanted to
solve (say, why the perihelion of mercury didn’t fol-
low Newton’s laws of physics) and they simply ‘con-
jectured’ (guessed) possible solutions to the prob-
lem (say, Einstein’s special or general relativity)
and then subjected both the old and new expla-
nations to tests designed to ‘refute’ either or both
theories (say, Arthur Eddington’s expedition to test
positions of stars near the sun during an eclipse.)
If these critical tests – or more generally any sort
of criticism – refutes one of the theories but not
the other (say, refuting Newton in favor of Rela-
tivity) then it is rational to go with the surviving
theory rather than the refuted theory regardless of
any need for certainty, justification, or probability.
Popper argued that this evolutionary ‘survival of

the fittest’ theory of knowledge was the actual ba-
sis for science and that induction was unnecessary
to explain the process and only created unneces-
sary problems when shoehorned into the scientific
method. Popper summarized his view of science as
“conjecture and refutation”.[8]
The false belief that induction was the basis for

science has led to a variety of philosophical mis-
takes. For example, Baconian induction claims that
from many observations (or rather from many spe-
cific statements) we generalize to a universal state-
ment or law. But we did not need to observe the
perihelion of Mercury thousands of times before

we realized something was amiss with Newtonian
physics. Often a single observation is sufficient to
start the conjecture process so long as the observa-
tion is a problem in need of a solution. Therefore,
only a special kind of observation – a problem, or
in other words an observation at odds with present
theories – starts the process to find a new general
law. Multiple observations are unnecessary.
But the most important philosophical mistake in-

troduced by Baconian induction was the idea that
science ever needed justification or certainty in the
first place. Popper pointed out that the mere fact
that we can compare two theories via a critical test
and demonstrate that one theory/explanation was
better than the other was sufficient reason to pre-
fer one theory over the other without ever needing
to claim certainty that the theory in question was
correct. The mere fact that it is the sole surviving
theory currently available to us is reason enough to
adopt it. In other words, theories are never con-
firmed but only falsified, and that’s OK. If we can
live without confirmation, as Popper argues we can,
then we have no need for Baconian induction.

2.3. Donald Campbell and universal Darwinism

In the 1980s philosopher Donald T. Campbell
took Popper’s idea of epistemology being rooted in
evolutionary processes and found a way to gener-
alize it. Campbell claimed that not only was sci-
ence based on an evolutionary process of ‘survival
of the fittest (idea)’ but in fact all knowledge cre-
ation was based on evolutionary epistemology.[9]
Popper later strongly endorsed this generalization
of his own theory.[10] This generalization was later
referred to as “universal Darwinism”.[11] The uni-
versal Darwin meta-algorithm can be thought of as
a generalization of biological evolution. Typically,
biological evolution is understood as having three
steps:

1. Replication of genes.

2. Inheritance of a phenotype from the genes with
some random variation among the offspring
due to either mutation or sexual crossover.

3. Differential survival of the offspring according
to which have a phenotype best at replicating
the next generation.

Our proposed version of the universal Darwinism
algorithm (influenced heavily by Campbell) makes
two important generalizations. The first is that
it does not require variations to be randomized,
though they may be. For example, trying out a
full sweep of all possible variations non-randomly is
acceptable as well. So does trying out only varia-
tions that match some heuristic or criteria meant
to narrow the search process. Campbell suggested
referring to this broader category of possible vari-
ations as “blind variation” to distinguish it from
the more narrow concept of “random variation”.[9]
However, this term tends to be misleading and has
led to confusion in the past.[12] So we favor instead
simply calling this process “variation and selection”
with no qualifier in front of the word “variation.”
We propose that any process where variant solu-

tions to a problem are generated – by any means
– followed by a selection process to narrow down
to the best variations, will be considered consistent
with our version of “universal Darwinism” regard-
less of how the variants were generated.
The second generalization is that we do not re-

quire replicators or inheritance from a previous gen-
eration. To use an example from Campbell[9], a
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paramecium that is blocked so that it can’t move
forward will try out each possible direction it can.
Once it finds a direction that is not blocked, it will
retain that direction until again blocked. The ‘vari-
ations’ are the different directions tried. The direc-
tion that it finds to not be blocked is the ‘selected’
variant. So Campbell considered this example to be
an evolutionary process despite there being no ‘in-
heritance’ from one variant to another. Of course,
having inheritance also is acceptable under “uni-
versal Darwinism”, it just is no longer considered
a requirement as in biological evolution. The fi-
nal Universal Darwin algorithm is therefore simply
“variation and selection” though to put a finer point
on it we’ll summarize this meta-algorithm as:

1. Start with a problem

2. Conjecture a solution(s) to the problem (i.e.
create variants)

3. Measure how well the proposed solution(s)
solve the problem

4. Over time, retain the better solution(s)

5. Repeat from step 2 until the problem is suffi-
ciently solved or an optima is reached

The “over time” in step 4 simply means that the
algorithm doesn’t need to always pick the best vari-
ation. It must merely do so over some unspecified
period of time. This allows algorithms like simu-
lated annealing to be considered valid kinds of uni-
versal Darwinism.
Many seemingly different algorithms will qualify

as universal Darwinism. Obviously genetic algo-
rithms will qualify, but so will all search algorithms.
Moreover, Popper’s scientific epistemology and bi-
ological Darwinian natural selection are now just a
subset of this more general algorithm. This meta-
algorithm thereby generalizes every type of evolu-
tionary algorithm that we currently know of. That
is the sense in which it is to be considered “univer-
sal.”
Universal Darwinism works for the very simple

reason that if you compare two (or more) variants
as possible solutions to a problem and keep the bet-
ter solutions – while discarding the worse ones –
ultimately you will select and retain the best vari-
ants, at least until a maxima is reached. Whether
or not it is a global or local maxima depends on the
specifics of the problem and the chosen algorithm.
For our purposes of this paper, we will refer to this
process of improvement of variants as knowledge-

creation.

3. Artificial Intelligence and universal Dar-

winism

3.1. All search algorithms utilize universal Darwin-

ism

Unlike Popper’s epistemology, which was specific
to how we improve scientific explanations, this final
algorithm also applies to other kinds of knowledge
creation including searching for optimal solutions to
a problem or finding useful heuristics. Russell and
Norvig suggested that artificial intelligence be mea-
sured in terms of how well it finds an optimal or (if
optimality is intractable) near optimal solution to
a problem.[13] As such universal Darwinism seems
ideal for the kinds of computational problems arti-
ficial intelligence is trying to solve so it should be
of interest to the fields of artificial intelligence and
machine learning. It is of added interest that the
universal Darwinism meta-algorithm unifies these

types of AI algorithms with biological evolution as
well as human thought and culture (via Popper’s
epistemology.) So both narrow AI and AGI are
types of universal Darwinism.
A survey of Russel & Norvig,[13] the most popu-

lar introductory text on AI, finds that many existing
AI algorithms already utilize universal Darwinism
as the basis for how they work. For example, all of
the following popular AI algorithms are really evo-
lutionary algorithms of variation and selection and
thus fall under the Universal Darwin algorithm:

1. Problem Solving by Searching
Example: A-Star works by trying out every possi-

ble variant (often guided by an admissible heuris-

tic) until the shortest path is found.

2. Non-Optimal Search Algorithms
Example: hill climbing, gradient descent, simu-

lated annealing, and genetic algorithms all utilize

variants and selection of the best variants.

3. Adversarial Search
Example: Minimax algorithms search every possi-

ble move utilizing a heuristic such as a board eval-

uation algorithm as a proxy for the best board po-

sition.

4. Constraint Satisfaction Problems
Example: Many CSP algorithms try out each pos-

sible combination to find an acceptable solution.

5. Logic and Planning Problems
Example: The DPLL algorithm does recursive

depth-first search enumerating possible models.

Likely, most people working within the AI field
have never thought of search algorithms as being
a kind of evolutionary algorithm of variation and
selection. It is common to only think of genetic al-
gorithms as being evolutionary algorithms due to
those being the only kind that match biological
evolution as described in section C above. Yet all
search algorithms count as forms of the more gener-
alized universal Darwin algorithm. Considering the
prominence of search algorithms within the field of
AI, this underscores the possible value of rethinking
AI from within the paradigm of universal Darwin-
ism.
This also raises a fascinating question. Is it pos-

sible that universal Darwinism powers every kind
of knowledge creation? Or is universal Darwinism
simply one of several possible ways to create knowl-
edge?
Campbell predicted as far back as 1960 [9] that

the universal Darwin algorithm was the sole source
of knowledge creation and that any time we had a
discovery or expansion to our knowledge we’d find
that variation and selection was requisite.[9] So if
we could find, within the AI field, any counterexam-
ples, that would be of interest to the field of univer-
sal Darwinism as it would challenge the view that
universal Darwinism is a sole source of knowledge-
creation.

3.2. Machine learning and induction

While search is prominent in existing AI algo-
rithms, and by extension so is universal Darwinism,
it is less clear if this is also the case for AI’s most
popular branch: machine learning.
Machine learning grew out of Statistical Learning

techniques such as Linear and Logistic Regression.
Statistics is often considered an “inductive” process.
Because of this shared history, machine learning is
also usually framed in terms of induction. For ex-
ample, Mitchell frames machine learning in terms
of “The Inductive Learning Hypothesis”:
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Table 1: Two kinds of induction

Baconian Induction Statistical Induction

Logically reasons from
specific statements to
universal statements

Based on frequentism

Obtains certainty, or at
least ’justification’ for
knowledge

Offers no certainty nor
justification

Is the basis for scientific
explanatory hypotheses

Is not the basis for sci-
entific explanatory hy-
potheses. Instead it cre-
ates useful heuristics.

Doesn’t exist Exists

“Any hypothesis found to approximate
the target function well over a sufficiently
large set of training examples will also ap-
proximate the target function well over
other unobserved examples”.[14]

How can machine learning’s inductive roots be
squared with Popper’s refutation of Induction?

3.3. Baconian induction vs statistical induction

Because Baconian Induction was (wrongly) in-
tended to describe how science worked, some of the
language of science has slipped into statistical in-
duction. For example, in both statistics and ma-
chine learning we often refer to a proposed model
as a ‘hypothesis’ as if it is a scientific theory. But
statistical/machine learning models rarely take the
form of an explanatory theory and are generally
simple predictive heuristics.[15]
To make this distinction more concrete, whereas

Baconian induction endeavours to reason from ob-
serving several white swans to a universal statement
“All swans are white”, statistical induction sets a
lower bar by using a random sample to predict how
common white swans are (a shift from universal
statements about the world to multiple statements
with credences assigned to each one).
While statistical induction has some utility, it

also has its own set of problems. For example, if
you lived in Europe during the 16th century when
it was believed that all swans must be white (and
thus “black swan” had come to refer to something
being “impossible”) even a seemingly valid random
frequentist sample would have found 100% of swans
to be white because black swans were only avail-
able in the yet to be discovered Australian conti-
nent. So we see that even a statistical inductive
model only makes good predictions if you first have
a correct prior theory about what variables to fac-
tor over, such as in this case location. Statistical
models are inherently parochial, they do not have
“reach” beyond the domain where the sampling is
taking place.[16] Models which do not reach beyond
what is known cannot stake out new claims (conjec-
tures) and thus do not expose themselves to refuta-
tion. Statistical induction thus cannot replace the
conjecture and refutation process of knowledge cre-
ation and rather is just a tool which is sometimes
useful when building theories that do have reach.

3.4. Machine learning and universal Darwinism

Machine learning is arguably the most important
form of AI and, particularly with deep learning, the
most successful. Often these functions are of a na-
ture that no human being knows how to program
them directly. For example, we don’t really know
how to build a really good facial recognition al-
gorithm using traditional programming techniques,

but deep learning can create one for us that has a
high degree of accuracy. It is unnecessary for us
to know exactly how deep learning creates such al-
gorithms to work effectively enough for many pur-
poses. It is currently an active area of research to
understand why deep learning works so well.[17]
So is deep learning really based on statistical in-

duction, as is widely assumed, or is it rooted in
universal Darwinism? Or is it a mixture of both?
While it may well be a mixture of both, we ar-
gue that the evolutionary aspects of a typical gra-
dient descent algorithm are key to understanding
why deep learning creates knowledge. Deep learn-
ing typically involves algorithms similar this:

1. Outer Loop:

(a) Initialize network weights randomly
(b) Try a set of hyper parameters

(c) Inner Loop

i. Measure loss function for weights
ii. Calculate slope at current weights
iii. Use slope to try to move to a better

set of weights

iv. Go to step i until improvements on
loss function stop for some period of
time.

(d) Go back to step b

Most people may not think of deep learning as
an evolutionary algorithm but a careful look at the
above algorithm (where emphasized) reveals deep
learning is actually two nested evolutionary algo-
rithms of trying variant solutions. This corresponds
nicely with Campbell’s “nested hierarchy of selec-
tive retention processes”[9] where one evolutionary
process can drive another evolutionary process. For
instance, at one level the evolution of ideas may
happen within a given mind, while at a higher level
the evolution of minds is happening via biological
evolution. Noble and Noble suggested that this hi-
erarchy of evolution is the basis for why evolution
often seems “purposeful” due to one level of evo-
lution driving another level towards some goal or
purpose.[18] An example of this hierarchy of evo-
lution is how the immune system can purposefully
drive hypermutation of genes to find the correct an-
tibodies for a particular invader.[18]
Increasingly, the training of deep learning mod-

els is being understood within the framework of
“search”. The lottery ticket hypothesis, for in-
stance, suggests that much of what stochastic gra-
dient descent is doing is finding the best sub-
network amongst the random weights of the ini-
tial network.[19] Recently Ramanujan et al. have
shown that large networks with random weights
have highly preferment subnetworks within them,
or in other words, that good performance can be
achieved merely by identifying a subnetwork rather
than changing any weights.[20]

3.5. Is the development of AI occurring in accor-

dance with universal Darwinism?

It is instructive that deep learning seems like an
inductive process but actually also utilizes an evolu-
tionary algorithm. Is it possible that all AI systems
are subsumed by the universal Darwinism frame-
work?
Most machine learning algorithms that involve

optimization can be subsumed into the framework.
As a random example, an ID3 decision tree tries
out each feature and measures the entropy infor-
mation gain for each feature and then selects the
best one. However it would seem that not every
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machine learning algorithm relies on universal Dar-
winism. Consider the näıve Bayes classifier as a
counterexample:

P (Cause,Effect1, ...Effectn) =

P (Cause)
∏

i

P (Effecti|Cause)) (4)

This formula seems to be purely ‘statistical induc-
tion’, a fixed process by which probability distribu-
tions are updated as new data is fed into the system.
It is important to emphasize, however, that any suc-
cessful application of Bayesian updating must be
nested within an evolutionary process.[21]
The selection of the right prior is recognized as

a problem which is fatal to the idea that Bayesian-
ism can operate successfully within a closed frame-
work. Rather, a proper prior must be fed in and
that prior must be informed by knowledge. If the
prior is too narrow, Bayesian updating is not guar-
anteed to converge and if it does converge may yield
non-sensical answer. Priors which are too broad, on
the other hand, can lead to Goodman’s new riddle
of induction. Priors that are too weak (flat) can
lead to overconfidence.[22] A full discussion of these
points is outside the scope of this paper but will be
the focus of a soon to be published work.[23]
The point is that the successful construction of

any useful Bayesian model itself involves a trial and
error process – what Andrew Gelman calls “the data
analysis cycle”.[21] We also note that in passing
that näıve Bayes strongly under performs on most
machine learning tasks. For example, using a näıve
Bayes classifier on MNIST has an error rate ap-
proach 20% whereas a recent deep learning model
obtained an error rate of 0.21%.[24]
Perhaps even more interesting are algorithms

that can optionally use universal Darwinism. The
best example of this is linear regression. Linear
regression typically is done using gradient descent,
which we already demonstrated is an evolutionary
algorithm. But linear regression can also be per-
formed using the normal equations which do not use
an evolutionary algorithm. The reason why we tend
to prefer using gradient descent for linear regression
is because the normal equations quickly become in-
tractable. This suggests that at least one advan-
tage to utilizing universal Darwinism is tractability.
By trying out variants, perhaps guided by a good
heuristic search such as gradient descent, we can
find good approximate solutions to a problem that
would otherwise be intractable to solve for if the
entire set of possible solutions had to be searched.
This is the whole basis for non-optimal search algo-
rithms like hill climbing or simulated annealing but
also for gradient descent. These counterexamples
suggest that Campbell may be incorrect that evo-
lutionary algorithms (universal Darwinism) are the
only means by which knowledge can be created.

4. Conclusion

We have seen that most artificial intelligence al-
gorithms in use today can be understood within a
universal Darwinian framework involving a process
of variation and selection that searches for a local
or global maxima solution to a problem. Though
there are some exceptions to this, such as näıve
Bayes, the algorithms that do not utilize evolution-
ary algorithms currently underperform algorithms
that do utilize an evolutionary approach. There
is as of yet no universally agreed upon theoretical

foundation for understanding how AI systems are
trained/created but a popular approach is to under-
stand things in terms as some approximation ideal-
ized Bayesian induction. In contrast to induction
based foundations, which are riddled with prob-
lems, we believe that Universal Darwinism provides
a stronger and more general foundation for under-
standing the emergence of intelligent algorithms.
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