Vektorrechnung Maschinenbau

Gegeben ist der Ortsvektor $a = \binom{p}{3}$.

Bestimmen Sie alle Vektoren a, b und c für die alle der folgenden Bedingungen gelten:

- 1. a, b und c sind die Seiten eines rechtwinkligen Dreiecks
- 2. b steht senkrecht auf a
- 3. a hat die Länge 3
- 4. c hat die Länge 5.

Lösung:

Zuerst stelle ich die Formeln auf, die sich aus den Bedingungen ableiten:

1. Rechtwinkligkeit:
$$|\vec{a}|^2 + |\vec{b}|^2 = |\vec{c}|^2$$

2.
$$\vec{b}$$
 senkrecht auf \vec{a} -> Skalarprodukt: $\vec{a} \circ \vec{b} = 0$

3.
$$|\vec{a}| = 3$$
, wobei $|\vec{a}| = \sqrt[2]{a_x^2 + a_y^2}$

4.
$$|\vec{c}| = 5$$
, wobei $|\vec{c}| = \sqrt[2]{c_x^2 + c_y^2}$

Nun geht es an das Auflösen der Gleichungen:

a) Berechnung der Länge/Betrag des Vektors des $|\vec{b}|$

Nach Formel (1)
$$|\vec{a}|^2 + |\vec{b}|^2 = |\vec{c}|^2$$

Umstellen nach
$$|\vec{b}|$$
 $|\vec{b}|^2 = |\vec{c}|^2 - |\vec{a}|^2$

Einsetzen der Werte
$$|\vec{b}|^2 = 5^2 - 3^2 = 25 - 9 = 16$$

Lösen:
$$|\vec{b}| = 4$$

b) Berechnung des x-Wertes des Vektors \vec{a}

Nach Formel (3)
$$|\vec{a}| = \sqrt[2]{a_x^2 + a_y^2}$$
, wobei $a_y = 3$

Umstellen nach
$$a_x$$
 $a_x = \sqrt[2]{|\vec{a}|^2 - a_y^2}$

Einsetzen der Werte:
$$a_x = \sqrt[2]{3^2 - 3^2} = \sqrt[2]{9 - 9} = \sqrt[2]{0} = 0$$

Vektor
$$\vec{a} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

c) Berechnung des Vektors
$$\vec{b}$$

Lösen:

Nach Formel (2)
$$\vec{a} \circ \vec{b} = 0$$
 Einsetzen der Werte und Variablen
$$\binom{0}{3} \circ \binom{b_x}{b_y} = 0$$
 Auflösen des Skalarproduktes:
$$0*b_x + 3*b_y = 0$$

Vektor
$$\vec{b} = \begin{pmatrix} b_x \\ 0 \end{pmatrix}$$
 Tipp: Über b_x kann man noch keine Aussage treffen, weil es sich kürzt.

 $b_{\nu}=0$

d) Berechnung des x-Wertes des Vektors b_x

Nach Formel
$$|\vec{b}| = \sqrt[2]{b_x^2 + b_y^2}$$
 Auflösen nach b_x
$$b_x = \sqrt[2]{|\vec{b}|^2 - b_y^2}$$
 Einsetzen der Werte
$$b_x = \sqrt[2]{4^2 - 0^2} = \sqrt[2]{4^2}$$
 Lösen:
$$b_x = \mathbf{4}$$

Somit lautet der Vektor
$$\vec{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 .

e) Berechnung des Vektors \vec{c}

Nach der Formel
$$\vec{c} = \vec{a} + \vec{b}$$

Einsetzen der Werte^ $\vec{c} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix}$
Lösen $\vec{c} = \begin{pmatrix} 0 + 4 \\ 3 + 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

Somit lautet der Vektor
$$\vec{c} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 .

f) Wahlweise kann eine zeichnerische oder rechnerische Probe durchgeführt werden:

a. Rechnerisch:

Nach Bedingungen (4):
$$|\vec{c}|=5$$
 Berechnung $|\vec{c}|$ über Formel (4) $|\vec{c}|=\sqrt[2]{c_x^2+c_y^2}$ mit den berechneten Werten aus e Einsetzen der Werte $|\vec{c}|=\sqrt[2]{4^2+3^2}=\sqrt[2]{16+9}=\sqrt[2]{25}=5$

b. Zeichnerisch:

x-y-Koordinatensystem zeichnen und die Vektoren eintragen.