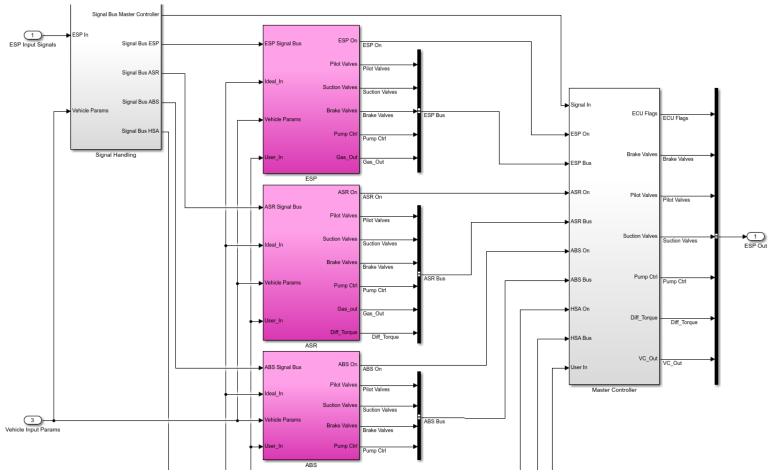
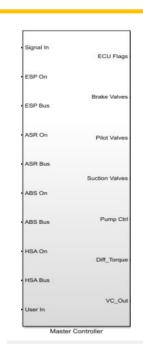
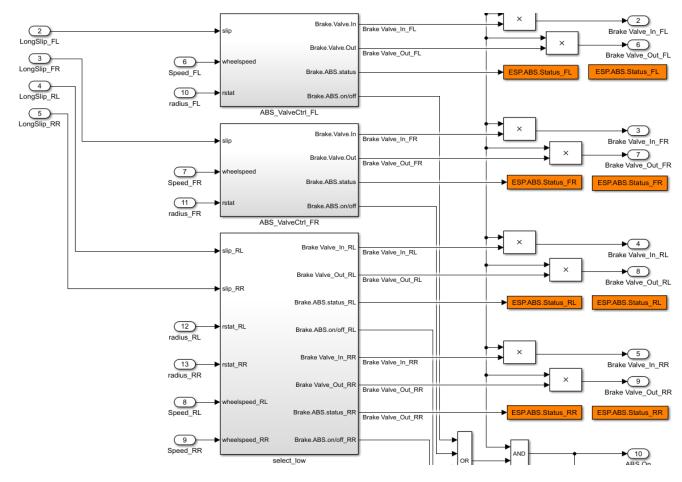
BREMSBASIERTE ASSISTENZFUNKTIONEN


FAHRDYNAMIKREGELSYSTEME


(ABS, ASR, ESP® - UBUNGEN)

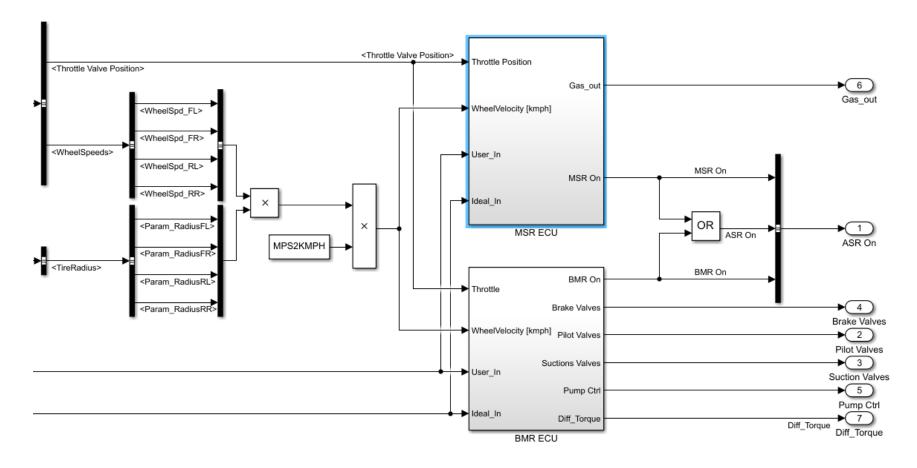
ROBERT BOSCH GMBH DIPL.-ING. ALBERT LUTZ

Übungen – ESC_{IPG}-Struktur



Master Controller

 Priorisierung der Regler (ABS, ESC, ASR, HAS)



Übungen – ABS_{IPG}-Struktur

Übungen – ASR_{IPG}-Struktur

Fahrdynamikregelsysteme Übungen CM4SL*) – ABS-/ASR-Manöver

► Projekt: CM 9.0.2 ESP

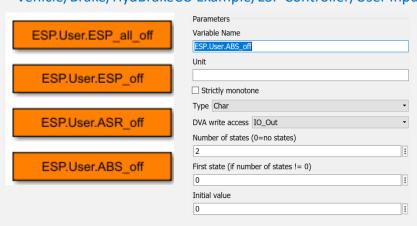
► SimuLink-Modell: HydBrakeCU ESP.mdl/-.slx

► Fzg-Modell: DemoCar_HydBrakeCU_ESP

► Reifen: RT 195 65R15

Manöver: Testrun Examples/Braking

► Fahrbahn: bspw. Testrun "Braking"− Modifikation des Reibwert


*) Alternativ kann auch das standalone compiled CM-Projekt "ADAS Master ESP CM9" genutzt werden

▶ Visualisierung:

- ► Window 0 als Funktion der Zeit:
 - Diagramm 1: Lenkradwinkel, Drehrate, Schwimmwinkel,
 Längs-, Querbeschleunigung
 - -Diagramm 2: ABS_aktiv, ASR_aktiv, FzgGeschw., Radgeschw.
 - –Diagramm 3: Reifenlängskräfte, Radbremsmomente
 Motormoment

► <u>Manöver:</u>

► Aktivierung/Deaktivierung Regler im SimulinkBlock:
HydBrakeCU_ESP_YawRate_so_modif/CarMaker/IPG
Vehicle/Brake/HydBrakeCU Example/ESP Controller/User Input Signals1

ESP-User.ABS_off = 0

ABS-aktiv

ESP-User.ABS_off = 1

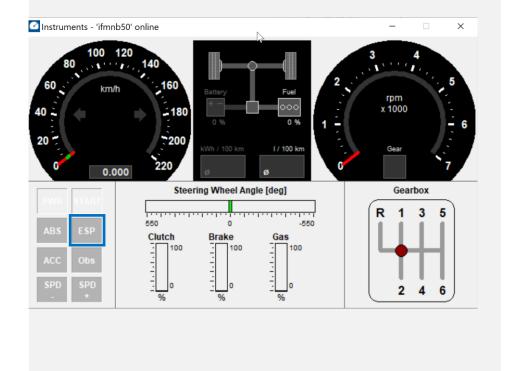
ABS-inaktiv

^{*)} Bei Nutzung des compiled standalone CM-Projekts "ADAS_Master_ESP_CM9" Parameterverstellung mittels DVA

Fahrdynamikregelsysteme Übungen- ABS-/ASR-Manöver

► <u>Manöver:</u>

► Aktivierung/Deaktivierung Regler mittels DVA:


Roter Rahmen: Verstärkung Sollgierrate

Blauer Rahmen: Aktivierung/Deaktivierung Regler

ESP-User.ESP_all_off = 0 ABS/ASR/ESP-aktiv

ESP-User.ESP all off = 1 ABS/ASR/ESP-inaktiv

Alternativ kann ESP aktiviert/deaktiviert werden in den Instruments

Übungen - Beispiel: Bremsmanöver m./o. ABS

Manöver 1 low-mue homogen:

- Beschleunigen
 - $-V_0 = 0$ km/h, $V_{max} = 72$ km/h, Längs- u. Quer: IPG-Driver
 - Haltephase: 3s
- Bremsmanöver:
 - Längsdynamik
 - Kupplung treten, Gas weg
 - Bremse auf 1
 - Querdynamik
 - IPG Driver
- ► Regler:
 - ABS: aktiv / inaktiv
 - ESP: inaktiv
- Variationen
 - Querdynamik manuell mit Sinuslenken
 - Amplitude: 60deg, Periode: 1s, >5 Perioden
- ► Fahrbahn
 - Modifikation des Reibwerts am Anbremspunkt s=650m
 - Mue low = 0.2 auf gesamter Fahrbahnbreite

Manöver 2 mue-split:

- Beschleunigen
 - $-V_0 = 0$ km/h, $V_{max} = 72$ km/h, Längs- u. Quer: IPG-Driver
 - Haltephase: 3s
- Bremsmanöver:
 - Längsdynamik
 - Kupplung treten, Gas weg
 - Bremse auf 1
 - Querdynamik
 - IPG Driver
- ► Regler:
 - ABS: aktiv / inaktiv
 - ESP: inaktiv
- ▶ Fahrbahn
 - Modifikation des Reibwerts am Anbremspunkt s=650m
 - Mue low = 0.2 auf linker Fahrbahnseite

Übungen - Beispiel: Bremsmanöver m./o. ABS

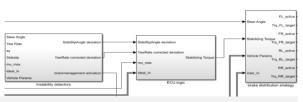
Manöver 3 mue-step pos/neg:

- **▶** Beschleunigen
 - $-V_0 = 0$ km/h, $V_{max} = 72$ km/h, Längs- u. Quer: IPG-Driver
 - Haltephase: 3s
- ▶ Bremsmanöver:
 - Längsdynamik
 - Kupplung treten, Gas weg
 - Bremse auf 1
 - Querdynamik
 - IPG Driver
- ► Regler:
 - ABS: aktiv / inaktiv
 - ESP: inaktiv
- ► Fahrbahn:
 - Modifikation des Reibwerts von 670 bis 690m
 - Mue low = 0.2 auf gesamter Fahrbahnbreite

Übungen - Beispiel: Beschleunigungsmanöver m./o. ASR

Manöver 4 low-mue homogen:

- ► Anfahrmanövermanöver:
 - Längsdynamik
 - Kupplung lösen
 - Gas geben (1)
 - Bremse auf 0
 - Querdynamik
 - IPG Driver
- ► Regler:
 - ASR: aktiv / inaktiv
 - ESP: inaktiv
- Variationen
 - Querdynamik manuell mit Sinuslenken
 - Amplitude: 60deg, Periode: 1s, >5 Perioden
- ▶ Fahrbahn
 - Modifikation des Reibwerts am Startpunkt s=0m
 - Mue low = 0.2 auf gesamter Fahrbahnbreite

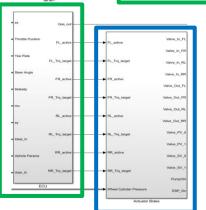

Manöver 5 mue-split:

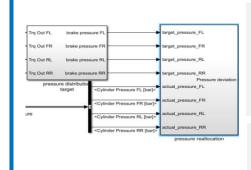
- ► Anfahrmanövermanöver:
 - Längsdynamik
 - Kupplung lösen
 - Gas geben (1)
 - Bremse auf 0
 - Querdynamik
 - IPG Driver
- ► Regler:
 - ASR: aktiv / inaktiv
 - ESP: inaktiv
- Variationen
 - Fahrbahnsteigung: 10% auf 100m Länge
- ▶ Fahrbahn
 - Modifikation des Reibwerts am Startpunkt s=650m
 - Mue low = 0.2 auf linker Fahrbahnseite

Übungen − ESC_{IPG}-Struktur

Instability Detectors

- Istwert gemessen
- Sollwerte trigonometr. Beziehung (Momentanpol)

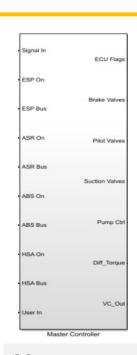

für Drehrate u. Schwimmwinkel


ECU-Logic

- Berechnung Threshold für Eingriffsschwelle; f(V)
- Stabilisierungsmoment: P-Regler auf Basis Drehrate und Schwimmwinkel
- Schwimmwinkel zur Freigabe ESC-Eingriffe

Brake Distribution Strategy

 Aufteilung Stabilisierungsmoment auf Soll-Radmomentenänderungen



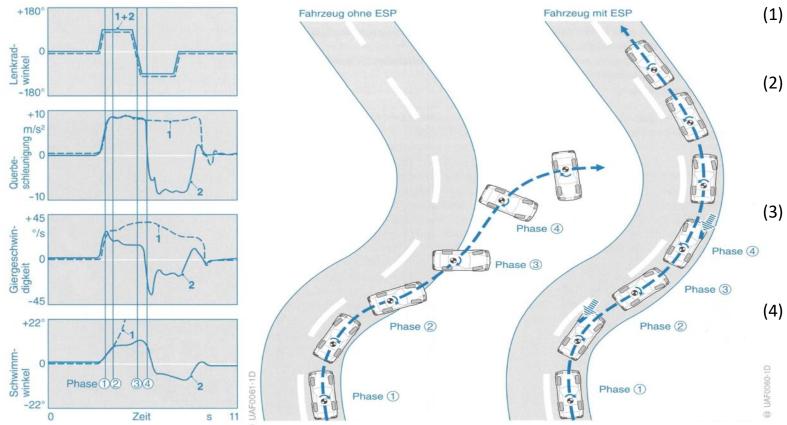
Pressure Distribution Target

- Umrechnung Soll-Radmomenteänderungen in Druckänderungen
- Superposition der Druckänderungen mit Raddrücken zu Solldrücken

Pressure Reallocation

 Regelung der Solldrücke durch Ansteuerung von Ventilen u. Pumpe

Master Controller


 Priorisierung der Regler (ABS, ESC, ASR, HAS)

Übungen - Beispiel: Doppelter Lenkwinkelsprung

Zeitverläufe fahrdynamischer Größen beim Durchfahren einer Rechts-Links-Kurve

- Fahrer lenkt, Seitenkraftaufbau, stark eindrehendes Giermoment
- (2) Drohende Instabilität: links: Fzg. wird instabil, reagiert auf Gegenlenken nicht rechts: ESP®-Eingriff links vorne
 - Gegenlenken
 links: Fzg gerät außer Kontrolle
 rechts: Fzg bleibt unter Kontrolle
 - Links: Fzg nicht beherrschbar rechts: ESP®-Eingriff vorne rechts, vollständige Stabilisierung

Übungen CM4SL*) - Beispiel: Doppelter Lenkwinkelsprung-ESP®-Performance Check

▶ Projekt: CM 9.0.2 ESP

➤ SimuLink-Modell: HydBrakeCU ESP.mdl/-.slx

► Fzg-Modell: DemoCar HydBrakeCU ESP

► Reifen: RT 195 65R15

► Road: unendlich große Fahrdynamikfläche, Mue = 1.0

*) Alternativ kann auch das standalone compiled CM-Projekt "ADAS Master ESP CM9" genutzt werden

► Visualisierung:

▶ Window 0 – als Funktion der Zeit:

-Diagramm 1: Lenkradwinkel, Drehrate, Schwimmwinkel, Längs-, Querbeschleunigung

-Diagramm 2: ESP aktiv, FzgGeschw., Radgeschw.

-Diagramm 3: Reifenlängskräfte, Radbremsmomente Motormoment

► Manöver:

 $ightharpoonup V_0 = 0 \text{km/h}$; Beschleunigen auf = 80km/h

Lenksprünge mit:

Anfangslenkwinkel: $Del_0 = 0^\circ$

Lenkamplitude: Del = +130°

 Lenkwinkelgeschwindigkeit: $dDel/dt = 400^{\circ}/s$

Haltezeit: t = 1s

Rücksprung auf: $Del = 0^{\circ}$

- ► ESP®
 - aktiv / inaktiv
 - Parameter: ESP.User.ESP all off (Default=0, Off=1)
- Variation
 - FzgGeschwindigkeit ab wann treten ESP * -Eingriffe auf?
 - Ausgehängter Stabilisator, vorne/hinten
 - Reglerverstärkungen: PID kP yawrate; PID kP sideslip

..\src cm4sl\HydBrakeCU ESP params.m

Übungen **CM4SL***) - Beispiel: Bremsen in der Kurve - ESP®-Performance Check

► Projekt: CM 9.0.2 ESP

► SimuLink-Modell: HydBrakeCU ESP.mdl/-.slx

► Fzg-Modell: DemoCar_HydBrakeCU_ESP

► Reifen: RT 195 65R15

► Road: Kreisbahn r=240m, Mue = 1.0

*) Alternativ kann auch das standalone compiled CM-Projekt "ADAS Master ESP CM9" genutzt werden

► <u>Visualisierung:</u>

► Window 0 – als Funktion der Zeit:

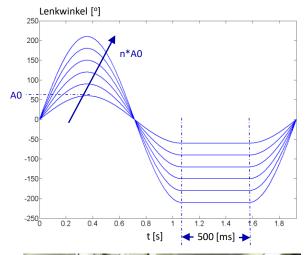
-Diagramm 1: Lenkradwinkel, Drehrate, Schwimmwinkel, Längs-, Querbeschleunigung

-Diagramm 2: ESP_aktiv, FzgGeschw., Radgeschw.

Diagramm 3: Reifenlängskräfte, Radbremsmomente
 Motormoment

► <u>Manöver:</u>

- $ightharpoonup V_0 = 0 \text{km/h}$; Beschleunigen auf ay = 0,35g
- Anbremsen mit:
 - Brake: 90%, dt=0.2s
- ► ESP®
 - aktiv / inaktiv
 - Parameter: ESP.User.ESP_all_off (Default=0, Off=1)
- Variation
 - FzgGeschwindigkeit Anbremsverhalten: ab wann treten ESP * -Eingriffe auf?
 - Ausgehängter Stabilisator, vorne/hinten
- ► Optional Testrun aus ...Examples/CorneringBraking als Basis

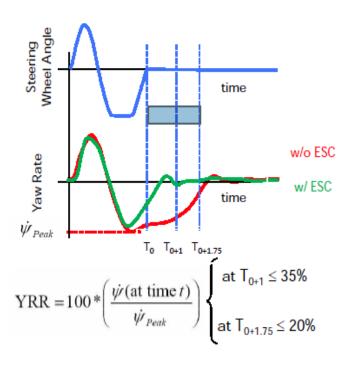

Fahrdynamikregelsysteme Übungen - Beispiel: Sine with Dwell - ESP®-Performance Check

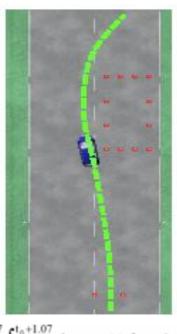
Zielsetzung:

- ► Zunehmende Verbreitung von ESP® erforderte einen Test zum Nachweis der Funktionalität
 - Weltweit durchführbar
 - Standardisiert
 - Repräsentatives Manöver
 - ► Nachweis von Stabilität und Lenkfähigkeit
 - ► Begrenzter Testaufwand
 - Differenzierung der Systeme (Yaw Rate Sensor)
- Realisierung
 - ► NA (NHSTA): FMVSS126-Test (2007)
 - ► EU: ECE Reg 13H & Euro NCAP ESC Test (2011-2014)
 - ► UN/ECE: weitere Länder

Manöver - Sine with Dwell:

- ► Fahrbahn: hoch-mue
- ▶ 80±2km/h, hoher Gang
- ► Sinuslenken mit 0.7Hz
- ► Haltezeit: 500ms
- ► A_0 -Amplitude für a_v =0.3g
- $Arr n*A_0@0.3g (n = 2...7)$
- ► Max. Amplitude: ~270°
- Ausführung mittels Lenkrobotor




Übungen - Beispiel: Sine with Dwell - ESP®-Performance Check

Kriterien:

► Abklingen der Drehrate (Stabilität)

Seitlicher Versatz des Fahrzeugs (Lenkfähigkeit)

$$\int_{t_0}^{t_0+1.07} \int_{t_0}^{t_0+1.07} Ay_{C.G.}(t)dt \ge 1.83 \text{ m}$$

Übungen CM4SL*) - Beispiel: Sine with Dwell - ESP®-Performance Check

► Projekt: CM 9.0.2 ESP

► SimuLink-Modell: HydBrakeCU ESP.mdl/-.slx

► Fzg-Modell: DemoCar_HydBrakeCU_ESP

► Reifen: RT 195 65R15

► Road: unendlich große Fahrdynamikfläche, Mue = 1.0

*) Alternativ kann auch das standalone compiled CM-Projekt "ADAS Master ESP CM9" genutzt werden

► <u>Visualisierung:</u>

► Window 0 – als Funktion der Zeit:

-Diagramm 1: Lenkradwinkel, Drehrate, Schwimmwinkel, Längs-, Querbeschleunigung

–Diagramm 2: ESP_aktiv, FzgGeschw., Radgeschw.

Diagramm 3: Reifenlängskräfte, Radbremsmomente
 Motormoment

► <u>Manöver:</u>

 $ightharpoonup V_0 = 0 \text{km/h}$; Beschleunigen auf = 80 km/h

► Einschwingphase: 3s

► Lenken mit Sine-with-Dwell

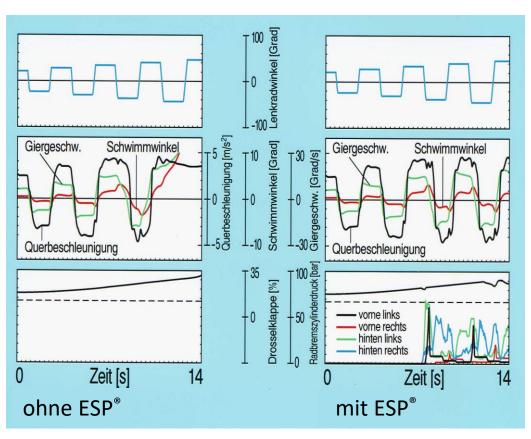
- Lenkamplitude: Del = $+130^{\circ}$

s. CarMaker/Examples

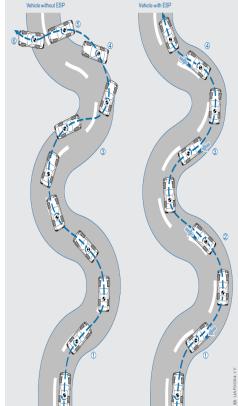
► ESP®

aktiv / inaktiv

Parameter: ESP.User.ESP_all_off (Default=0, Off=1)


► NHTSA-Kriterien anwenden

- Yaw Rate: $t=t_0+1.0: \le 35\%$ $t=t_0+1.75: \le 20\%$


- Seitenversatz: $t=t_0+1.07$: $s\ge 1,83$ m

Übungen - Beispiel: Bidirektionale Lenkstufen

Vergleich Slalom Manöver mit zunehmender Lenkamplitude ohne/mit ESP $^{\circ}$ (μ = 0.45, V=72km/h)

Übungen CM4SL*) - Beispiel: Bidirektionale Lenkstufen

▶ Projekt: CM 9.0.2 ESP

➤ SimuLink-Modell: HydBrakeCU ESP.mdl/-.slx

► Fzg-Modell: DemoCar HydBrakeCU ESP

▶ Reifen: RT 195 65R15

► Road: unendlich große Fahrdynamikfläche; Mue = 0.45

*) Alternativ kann auch das standalone compiled CM-Projekt "ADAS_Master _ESP_CM9" genutzt werden

► Visualisierung:

► Window 0 – als Funktion der Zeit:

-Diagramm 1: Lenkradwinkel, Drehrate, Schwimmwinkel, Längs-, Querbeschleunigung

-Diagramm 2: ESP aktiv, FzgGeschw., Radgeschw.

-Diagramm 3: Reifenlängskräfte, Radbremsmomente Motormoment

Window 1 - Phasenplot:

 Diagramm 1: Drehrate, Schwimmwinkel, Lenkradwinkel als Funktion der Querbeschleunigung

► Manöver:

 $ightharpoonup V_0 = 0 \text{km/h}$; Beschleunigen auf = 72km/h und halten der Geschwindigkeit

► Lenksprünge mit:

Anfangslenkwinkel: $Del_0 = 0^\circ$

Lenkamplitudenzunahme: $\Delta Del = 5^{\circ}/Sprung$

– Lenkwinkelgeschwindigkeit: $dDel/dt = 200^{\circ}/s$

Haltezeit: t = 1s

 $Del_{max} = 100^{\circ}$ Max. Lenkwinkel:

► ESP®

aktiv / inaktiv

Parameter: ESP.User.ESP all off (Default=0, Off=1)

Optional Variationen

Solldrehrate +/-20%

Parameter: Gain YawRate so modif (Default=1)