BREMSBASIERTE ASSISTENZFUNKTIONEN

FAHRDYNAMIKREGELSYSTEME (ABS, ASR, ESP® - EINFÜHRUNG)

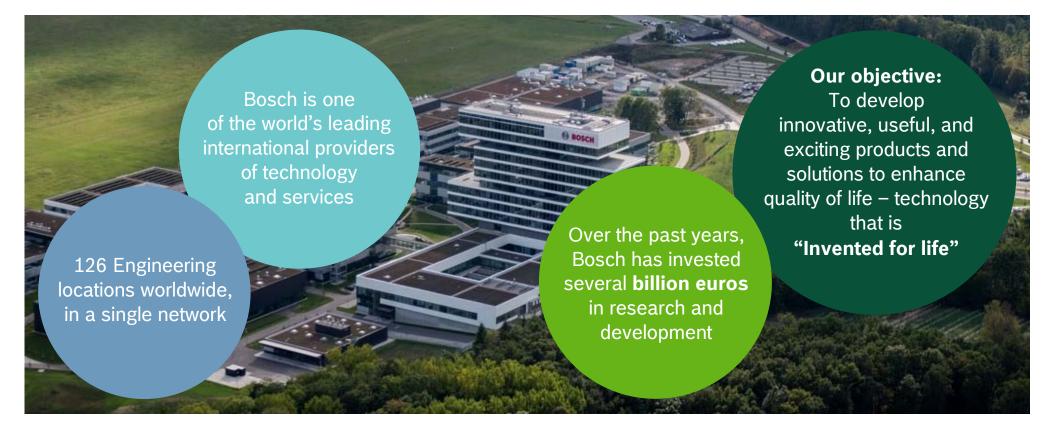
ROBERT BOSCH GMBH DIPL.-ING. ALBERT LUTZ

Bremsbasierte Assistenzfunktionen Gliederung 1/2

- ► Teil 1 17.12.2020
 - ▶ 1/1 Einführung
 - ▶ BOSCH, Chassis Systems Control
 - ▶ Motivation
 - ► Grundlagen der Fahrdynamik
 - ▶1/2 Antiblockiersystem ABS / Antriebsschlupfregelsystem ASR
 - ► Anforderungen
 - ► Regelkonzept
 - ► Sicherheitskonzept
 - ► Komponenten
 - ► 1/3 Elektronisches Stabilitätsprogramm ESP®
 - ► Anforderungen
 - ► Regelkonzept

Bremsbasierte Assistenzfunktionen

Gliederung 2/2


- ► Teil 1 07.01.2021
 - ► 1/3 Elektronisches Stabilitätsprogramm ESP®
 - ► Sicherheitskonzept
 - ► Komponenten
 - ▶ New Braking Systems für ADAS
- ► Teil 2 07.01.2021
 - ► 2/1 ESP® -Applikation
 - ► Zielsetzung & Prozess
 - ► Ausgewählte Beispiele
 - Lenkcharakteristik (Sch), Charakteristische Geschwindigkeit (Vch)
 - PID-Regler
 - Verifikation (Fahrmanöver, Robustheit, Performance)
 - ► 2/2 Virtuelle Applikation (Simulation)
 - ► Fzg-spez. Bedatung
 - ► Basisapplikation (Vch, Sch)
 - ► Sine with Dwell (SwD) (mit/ohne Applikation)

BOSCH - CORPORATE PRESENTATION

Bosch – Corporate presentation Technology to enhance quality of life

Bosch – Corporate presentation A global network - Market and figures 2019*

* As of 12.19 52% 60* 398 150* 242 506 Bosch associates countries -138 make these solutions 440 regional possible subsidiaries 77.7 billion euros Sales revenue Four business sectors 111 717 19% 72 43 927 Mobility Industrial Energy & Building Consumer Solutions Technology Technology Goods 35

Including sales and service partners, Bosch's global manufacturing and sales network covers nearly every country in the world.

Bosch – Corporate presentation Die Robert Bosch GmbH

Im Jahr 1886 gründete Robert Bosch die "Werkstätte für Feinmechanik und Elektrotechnik" in Stuttgart. Sie ist die Wurzel des heute weltweit agierenden Unternehmens, das von Beginn an durch Innovationskraft und soziales Engagement geprägt war.

Anteile in Prozent Robert Bosch GmbH Tamilie Bosch T Stimmrechte Stimmrechte Familie Bosch T Robert Bosch Stiftung GmbH T 92

"Sei Mensch und ehre Menschenwürde."

ROBERT BOSCH, 1920

MOBILITY SOLUTIONS

CC - CHASSIS SYSTEMS CONTROL

SOLUTIONS FOR SAFE, AGILE AND AUTOMATED DRIVING

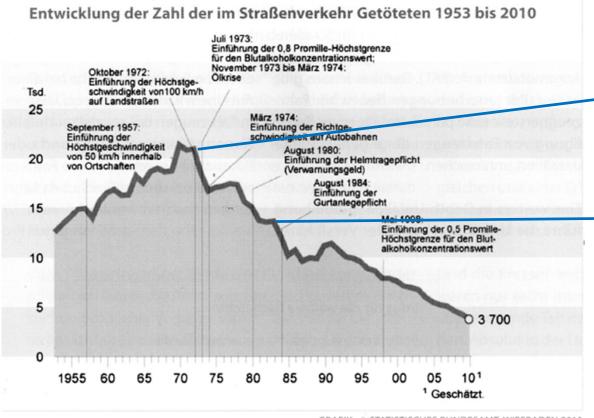
Mobility Solutions und GB Chassis Systems Control - CC

Personalized mobility

Automated mobility

Connected mobility

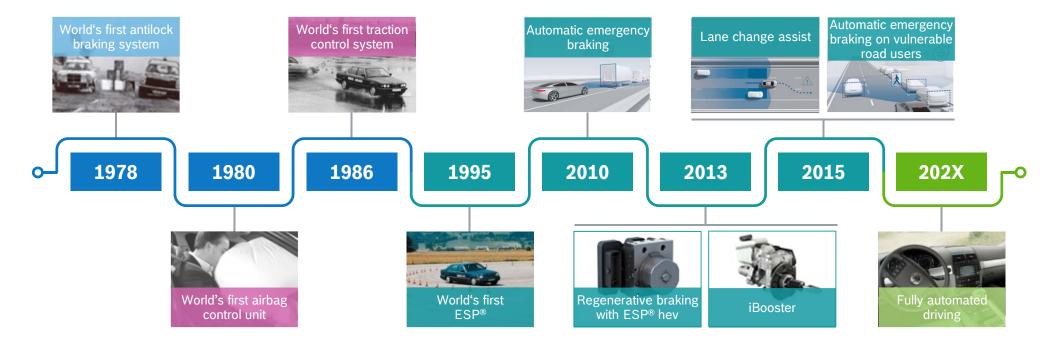
Powertrain systems and electrified mobility *key figures from 2019


fun and fascinating safe and comfortable

efficient and economical

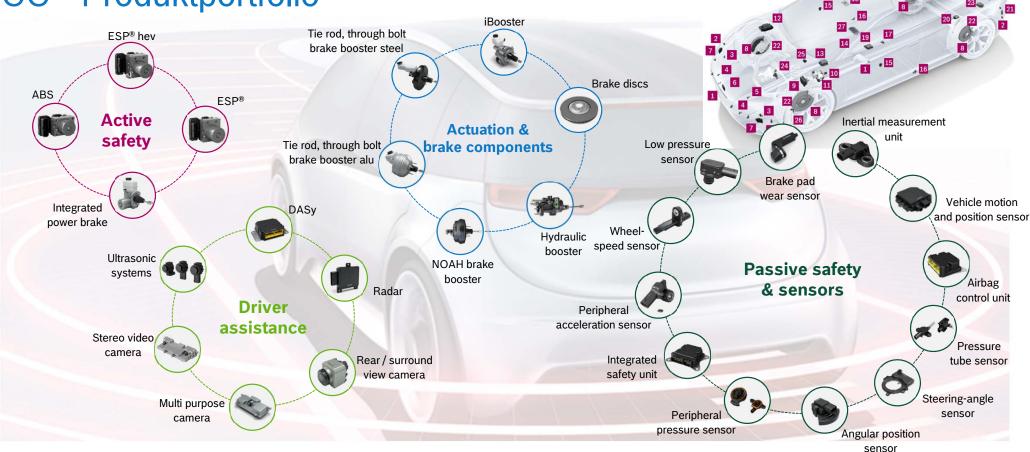
Chassis Systems Control

Bremsbasierte Assistenzfunktionen Verkehrssicherheit

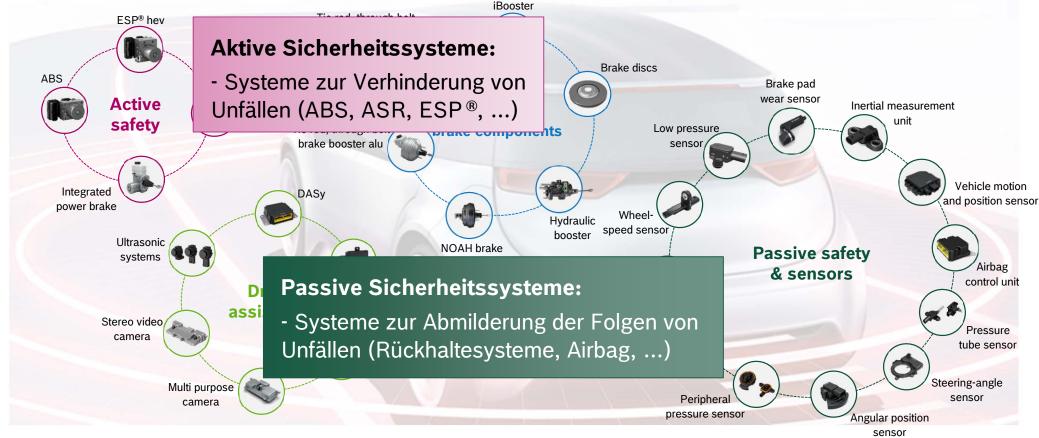

Landstraßen sind das gefährlichste **Pflaster:**

- ▶ Nie sank die Zahl der getöteten Verkehrsteilnehmer deutlicher als nach Einführung des Limits von 100km/h auf Landstraßen
- ► Ähnlich prägnant fällt der Rückgang nach der Gurtpflicht aus

GRAFIK: © STATISTISCHES BUNDESAMT, WIESBADEN 2010



CC - Meilensteine der Verkehrssicherheit



CC - Produktportfolio

CC - Produktportfolio

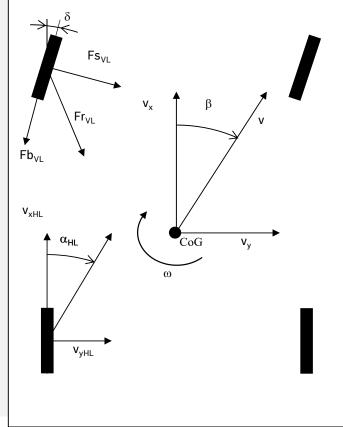
Bremsbasierte Assistenzfunktionen Einführung

- > Schwere Unfälle entstehen sehr häufig durch Verlust der Fahrzeugbeherrschbarkeit: der Fahrer kann das Fahrzeug nicht mehr in die gewünschte Richtung lenken.
- ➤ ABS, ASR und ESP® sind Regelsysteme, die mittels Regelung der Bremse und des Motors den Verlust der Beherrschbarkeit weitgehend verhindern.
- ➤ Hierzu kann ABS das Blockieren der Räder verhindern, ASR das Durchdrehen der angetriebenen Räder verhindern und ESP® durch Verwendung der ABS- und ASR-Funktionen das Über- und Untersteuern des Fahrzeugs im Grenzbereich verhindern.
- ➤ Der optimale Kompromiss zwischen Längs- und Querbewegung des Fahrzeugs muss unter verschiedenen Randbedingungen wie Sicherheit bei Komponentenausfall, Komfort, Kosten der Entwicklung und der Komponenten, Entwicklungszeit, Fertigbarkeit, Robustheit, Applizierbarkeit und Erweiterbarkeit der Regelsysteme sichergestellt werden.

BREMSBASIERTE ASSISTENZFUNKTIONEN

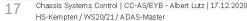
FAHRDYNAMIKREGELSYSTEME

(ABS, ASR, ESP® - GRUNDLAGEN)

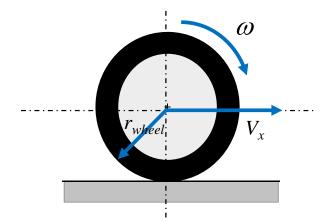

ROBERT BOSCH GMBH DIPL.-ING. ALBERT LUTZ

Grundlagen Fahrdynamik: Wichtige Begriffe

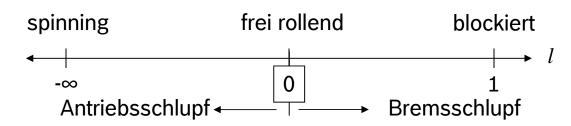

- Schlupf $\lambda = 1 \frac{vRad}{vRadFrei} = \frac{v_{xWheel} \omega_{wheel} \cdot r_{dyn}}{v_{xWheel}}$ (Bremsschlupf > 0, Antriebsschlupf < 0)
- Schräglaufwinkel α_V , α_H (alVA, alHA)
- Schwimmwinkel β (beta)
- Drehrate ω (vGi)
- Querbeschleunigung ay (ayToF)
- Lenkwinkwinkel δ (Lw)
- Bremskraft Fb; (FbRadxy)
- Seitenkraft Fs; (FsRadxy)
- Resultierende Gesamtkraft Fr; (FrRadxy)


Größen nach rechts zeigend sind positiv (> 0). In einer Rechtskurve sind alle Signale (vGi, ay, Lw) > 0; Ausnahme: Schräglaufwinkel alVA, alHA < 0, Schwimmwinkel kann > 0 oder < 0 sein

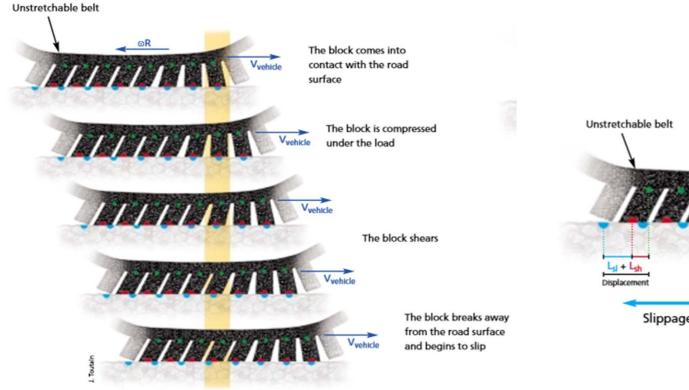
Grundlagen Fahrdynamik: Reifendynamik

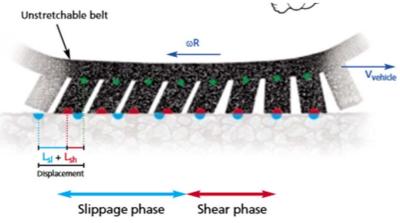


BOSCH


Definition des Schlupfes

Der Schlupf λ am Rad ist definiert als die Differenz zwischen

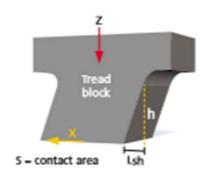

- der translatorischen Geschwindigkeit der Radnabe und
- > der rotatorischen Umfangsgeschwindigkeit des Rades



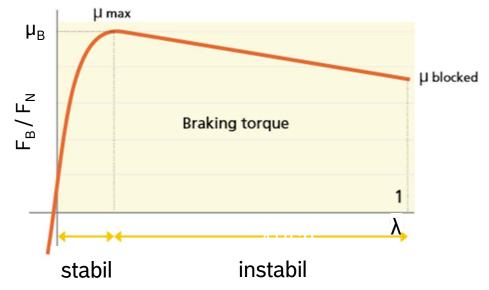
$$\lambda = \frac{v_x - v_{wheel}}{v_x} = \frac{v_x - r_{wheel}\omega}{v_x}$$

Grundlagen Fahrdynamik: Reifendynamik längs

Reifenabrollkinematik u. Deformationsprofil

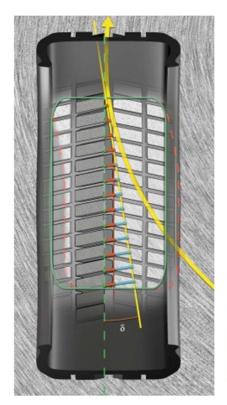


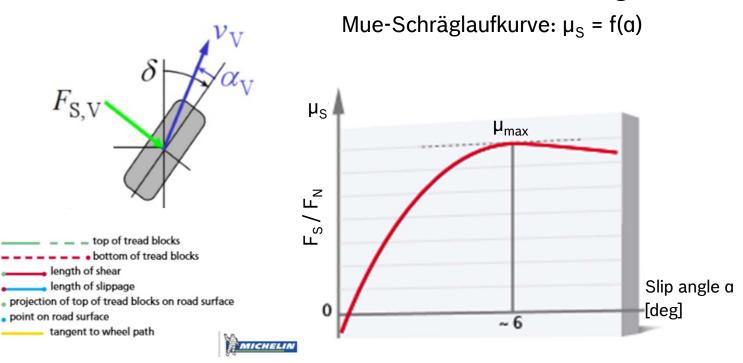
Grundlagen Fahrdynamik: Reifendynamik längs


Resultierende Bremskraft:

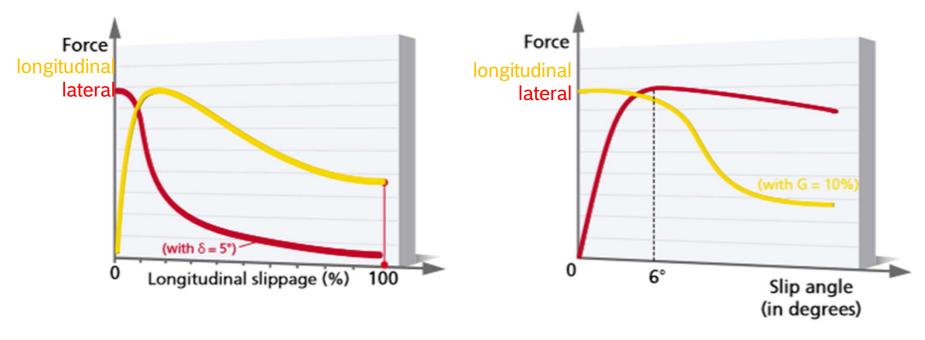
$$F_B = \mathbf{c}_i^* \int_{i=1}^n s_i$$

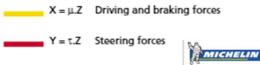
Resultierende Bremskraft als Funktion des Schlupfs λ :


Mue-Schlupfkurve: $\mu_B = f(\lambda)$



Grundlagen Fahrdynamik: Reifendynamik quer

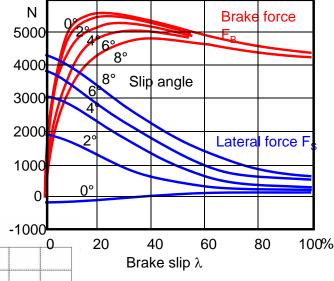

Resultierende Seitenkraft als Funktion des Schräglaufwinkels α :

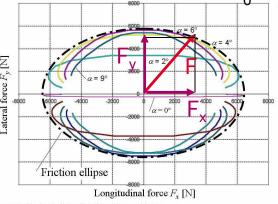

Reifenabrollkinematik u. Deformationsprofil

Grundlagen Fahrdynamik: Reifendynamik längs & quer

 When the slippage rate exceeds 15 % (hard braking), the tyre's capacity to develop transversal forces drops sharply (see curve above).

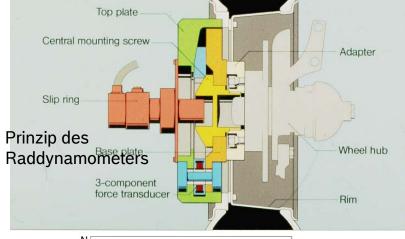
 However, the tyres on a car in a tight bend at high speed, i.e. when the slip angle is about 6°, continue to generate substantial longitudinal forces (see curve opposite).

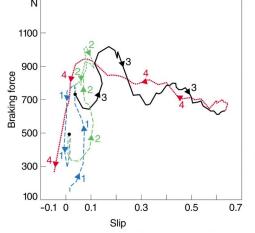

Grundlagen Fahrdynamik: Reifendynamik längs & quer


Reifencharakteristik

- Reifenkräfte sind abhängig vom Längsschlupf und Schräglaufwinkel
- Durch Erhöhung oder Reduktion des Bremsmomentes kann der Längschlupf geändert warden
- Dadurch können sowohl sowohl Längs- als auch Seitenkräfte modifziert warden
- > Fazit: der Kraftvektor am Rad kann gedreht werden

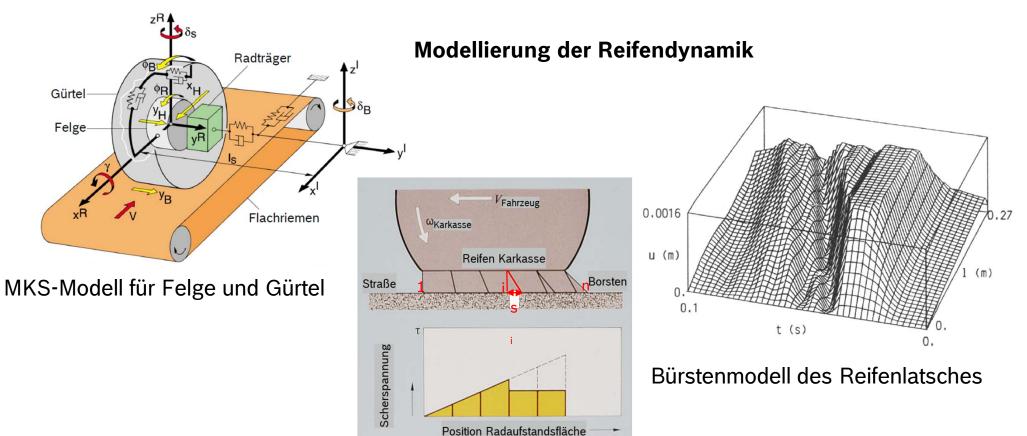
- > Zusammenhang zw. Reifenlängs- u. -querkräften
- Die resultierende Gesamtkraft ergibt sich wie folgt





(H) BOSCH

Grundlagen Fahrdynamik: instationäre Reifendynamik



Reifenkräfte mit dem

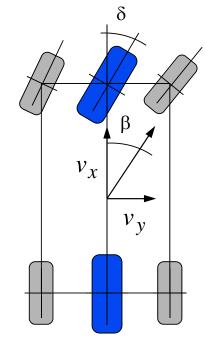
Raddynamomete

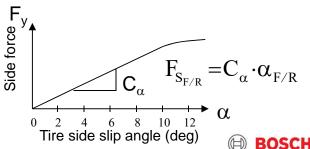
rotierenden

Grundlagen Fahrdynamik: instationäre Reifendynamik

Grundlagen Fahrdynamik: Einflüsse auf Reifendynamik

- > Fahrbahnoberflächen
- > Radlast
- > Sturzwinkel
- > Reifendruck
- > Temperatur
- > Aufstandsfläche
- Reifenkonstruktion
- ➤ Verschleiß
- > Schneeketten
- **>** ...





Grundlagen Fahrdynamik: Querdynamik

Lineares Einspurmodell

- Basics
 - Entwickelt von Rickert&Schunk (1940)
 - Einfaches aber effektives Modell zur Analyse der Fahrdynamik
- Annahmen
 - Räder an einer Achse durch ein Rad repräsentiert
 - Ebenes Modell (CoG-Höhe = 0) u. ebene Fahrbahn
 - Winkel sind linearisierbar → gültig bis ca. 0.3g Querbeschleunigung
 - Linearer Zusammenhang zw. Reifenseitenkraft u. Schräglaufwinkel
 - Stationärer Fahrzustand $\dot{v}_x = 0$ $\dot{v} = 0$ $F_{v,FA} \cdot l_{FA} = F_{v,RA} \cdot l_{RA}$
- > Anwendung
 - Dient zur Ableitung der Ackermann-Formel
 - Schätzung von fahrdynamischen Größen
 - Bestimmung kurveninneren u. äußeren Rädern

Grundlagen Fahrdynamik: Querdynamik

Lineares Einspurmodell - Bewegungsgleichungen

ightharpoonup Impulsbilanz: $ma_y = F_{S_F} + F_{S_R}$

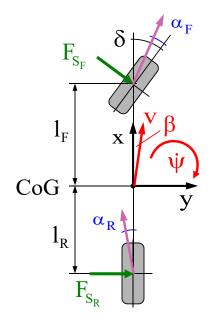
> Drehimpulsbilanz: $J_z \ddot{\psi} = F_{S_F} I_F - F_{S_R} I_R$

mit

> Querbeschleunigung: $a_y = v(\dot{\beta} + \dot{\psi})$

Schräglaufwinkel: $\alpha_{\rm F} = \delta - \beta - \frac{l_{\rm F}}{V} \dot{\psi}$

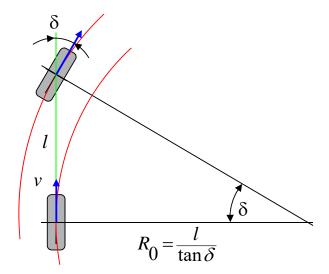
$$\alpha_{\rm R} = -\beta + \frac{l_{\rm R}}{v} \dot{\psi}$$

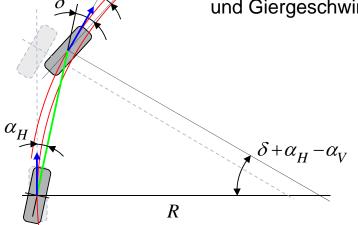

Seitenkräfte

 $F_{S_{F/R}} = C_{\alpha} \cdot \alpha_{F/R}$

Zustandsraummodell 2. Ordnung

Zustandsgrößen: Schwimmwinkel β, Giergeschwindigkeit ψ


Eingangsgröße: Lenkwinkel δ


Grundlagen Fahrdynamik: Querdynamik

- Fall 1: v, ay klein, kein Schräglaufwinkel
 - Gierbewegung ist definiert durch die Fzg-Geometrie

$$\dot{\Psi}_0 = \frac{v}{R_0} = \frac{v}{l} \cdot \tan \delta \approx \frac{v}{l} \cdot \delta$$

- Fall 2: v, ay groß, Schräglaufwinkel nicht vernachlässigbar
 - 2 gegenläufige Effekte:
 - ψ nimmt anfangs linear zu mit V
 - Fzg. schiebt infolge zunehmendem Schräglaufwinkel kurvenauswärts, Kurvenradius nimmt zu und Giergeschwindigkeit ψ ab

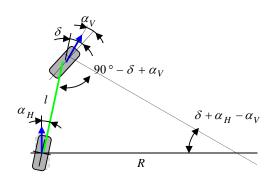
Grundlagen Fahrdynamik: Querdynamik

➤ Die Querbeschleunigung indiziert Seitenkräfte:

$$m \cdot a_{y} = F_{y,FA} + F_{y,RA}$$

> Seitenkräfte sind abhängig vom Schräglaufwinkel:

$$F_{y,FA} = C_{FA} \cdot \alpha_{FA}$$
, $F_{y,RA} = C_{RA} \cdot \alpha_{RA}$


> Seitenkräfte korrespondieren mit dem Hebelarm:

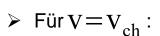
- $F_{y,FA} = \frac{l_H}{l} m a_y$, $F_{y,RA} = \frac{l_V}{l} m a_y$
- > Schräglaufwinkel sind abhängig von der Quergeschleunigung a_v:
- $\alpha_{FA} = \frac{ml_{RA}}{C_{FA}l}a_y$, $\alpha_{RA} = \frac{ml_{FA}}{C_{PA}l}a_y$

> Der Kurvenradius ist abhängig vom Schräglaufwinkel:

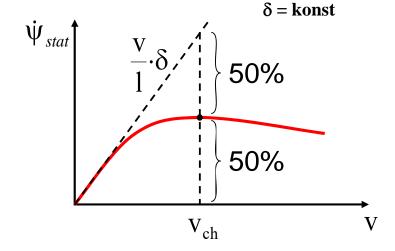
Law of Sines

$$R = l \cdot \frac{\sin(90^{\circ} - \delta + \alpha_V)}{\sin(\delta + \alpha_H - \alpha_V)} \approx \frac{l}{\delta + \alpha_H - \alpha_V}$$

Grundlagen Fahrdynamik: Querdynamik


Stationäres Lenkverhalten (V, δ konstant)

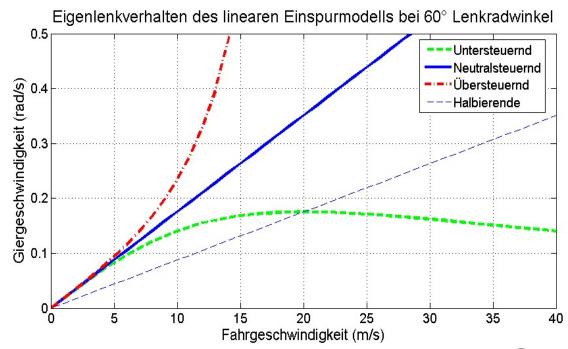
Stationärer Wert der Gierrate (Ackermanngleichung):


(Ackermanngleichung):
$$\dot{\psi}_{stat} = \frac{v}{(l_F + l_R)} \cdot \delta \cdot \frac{1}{1 + (v/v_{ch})^2}$$

> Charakteristische Geschwindigkeit:

$$v_{ch}^{2} = \frac{C_{F}C_{R}(l_{F}+l_{R})^{2}}{m(C_{R}l_{R}-C_{F}l_{F})}$$

- die Gierrate ist maximal
- die Gierrate ist halb so groß wie der Wert $v/1\cdot\delta$ ohne $v_{\rm ch}$ Korrektur gleichbedeutend: der Kurvenradius hat sich verdoppelt


Grundlagen Fahrdynamik: Querdynamik

Eigenlenkverhalten

> Definiert durch die charakteristische Geschwindigkeit:

$$v_{\rm ch} = l \cdot \sqrt{\frac{1}{m} \cdot \left(\frac{c'_{\alpha, \text{V}} \cdot c'_{\alpha, \text{H}}}{c'_{\alpha, \text{H}} \cdot l_{\text{H}} - c'_{\alpha, \text{V}} \cdot l_{\text{V}}} \right)}$$

- > Beim neutralsteuernden Fahrzeug ist: $c'_{\alpha,H} \cdot l_H c'_{\alpha,V} \cdot l_V = 0$
- ➤ Beim untersteuernden Fahrzeug ist: $c'_{\alpha,H} \cdot l_H c'_{\alpha,V} \cdot l_V = positiv$
- > Beim übersteuernden Fahrzeug ist: $c'_{\alpha,H} \cdot l_H c'_{\alpha,V} \cdot l_V = \text{negativ}$

BREMSBASIERTE ASSISTENZFUNKTIONEN

FAHRDYNAMIKREGELSYSTEME (ABS, ASR, ESP)

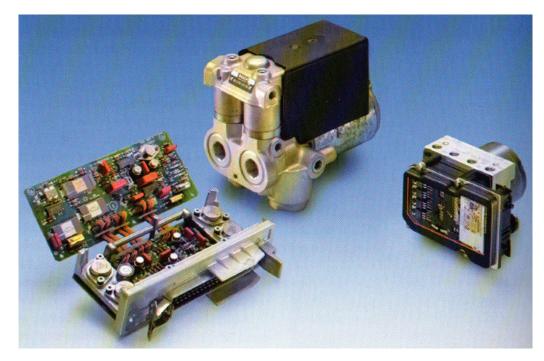
ROBERT BOSCH GMBH DIPL.-ING. ALBERT LUTZ

Meilensteine

- 1908 Erstes Patent "Gleitschutzregler" für Schienenfahrzeuge
- 1928 Erster Blockierverhinderer für Kraftfahrzeuge auf Basis Patent von Karl Wessel; mechanisch-hydraulisches ABS auf Basis Radverzögerung
- 1936/39 Anmeldung BOSCH-Patent: ABS für Pkw
- 1948 Das erste ABS wurde in Flugzeugen angewendet mit dem Ziel, das Platzen von Reifen während der Bremsung bei der Landung zu verhindern (Dunlop-Maxaret)

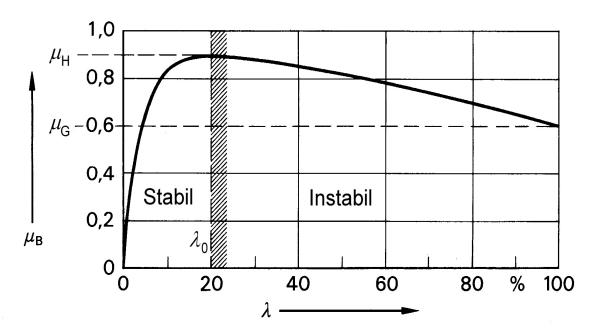
- 1958 Manfred Burckhardt bei Daimler Benz formuliert ein erstes Lastenheft für ABS:
 - Kombination Hydraulik mit Elektrik und Elektronik
 - Zuverlässigkeit schnellschaltender Hydraulikventile die im Bereich von Millisekunden schalten müssen
 - Herstellung von Sensoren angebracht an jedem Rad angebracht zur Messung derRadbeschleunigung Wesentlich verstärkte Fahrwerksbelastung durch ABS-Bremse-"Stottern" (Vorderachsbruch)

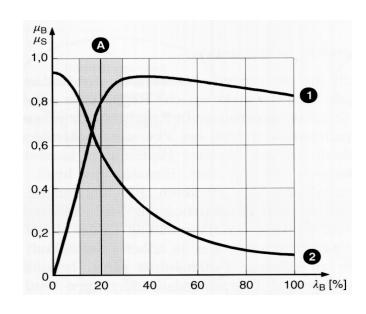
Meilensteine


1964	Heinz Leiber bei Teldix wird mit der Konstruktion eines ABS beauftragt (hieraus geht schließlich ABS2S hervor)
1978	Erstes serienmäßige ABS (ABS2S) für PKW (Mercedes/Bosch)
1985	Analyse verschiedener alternativer ABS-Konzepte (1K-, 2K-Regler, Schlupfregler)
1987	Erstes serienmäßige ASR für PKW (Mercedes/Bosch)
1990	Entscheid zur ESP-Entwicklung
1995	Erstes serienmäßiges FDR/ESP für PKW (Mercedes/Bosch)
2001	EHB/SBC – erstes serienmäßiges Brake by Wire System (Mercedes/Bosch)

Fahrdynamikregelsysteme Meilensteine

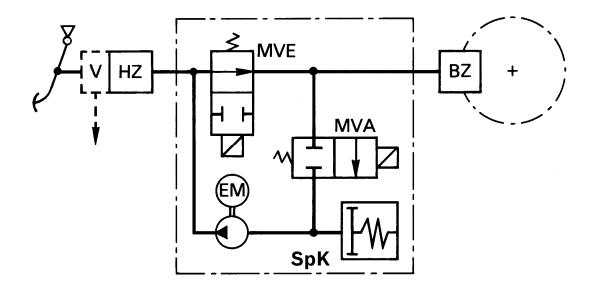
ABS1 (Teldix 1970)




ABS2S (BOSCH 1978)

ABS8 (BOSCH 2001)

ABS: Optimierung der Bremskraft (Optimiser-Prinzip)



In erster Näherung optimiert ABS den Reibwert zwischen Reifen und Fahrbahn durch ständiges Pendeln zwischen dem stabilen und instabilen Bereich der Schlupfkurve. Damit liegt bei ABS der Schlupfmittelwert immer in der Nähe von λ_0 .

Für erhöhte Fahrstabilität in Kurven soll der Schlupfmittelwert (A) kurz unterhalb von λ_0 liegen. Dadurch wird der Bremsweg etwas länger. Bei minimalem Bremsweg ist die Kurvenstabilität nicht ausreichend.

ABS-Regelkonzept: Hydraulische Prinzip des ABS-Hydroaggregats

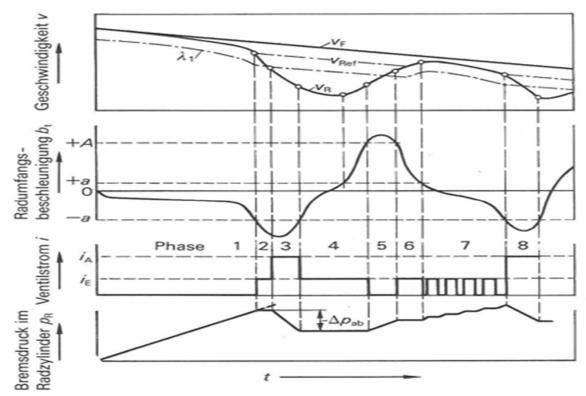
HZ: Hauptbremszylinder

BZ: Radbremszylinder

MVE: 2/2 Magneteinlassventil

MVA: 2/2 Magnetauslassventil

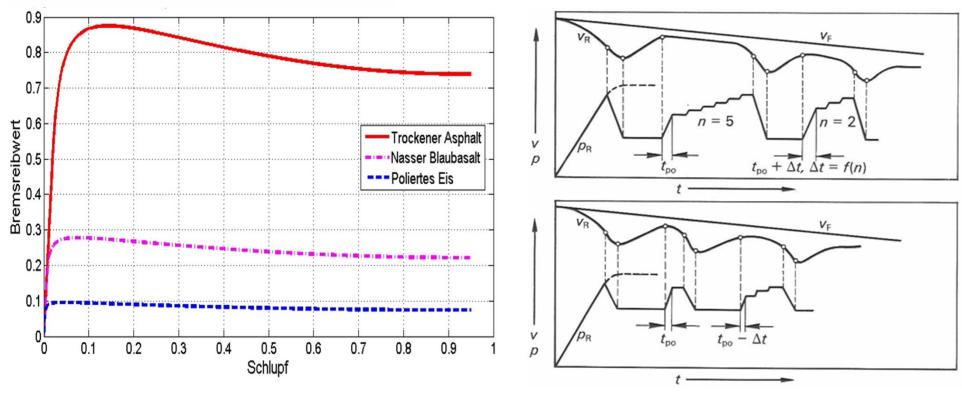
EM: Rückförderpumpe


SpK: Speicherkammer

Anm.: Hydraulikschaltbilder werden

immer im stromlosen Zustand gezeichnet.

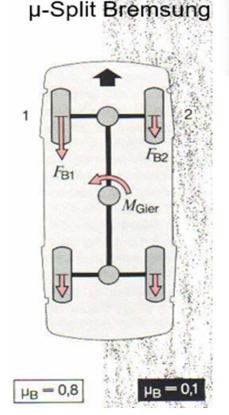
ABS-Regelkonzept: Regelprinzip

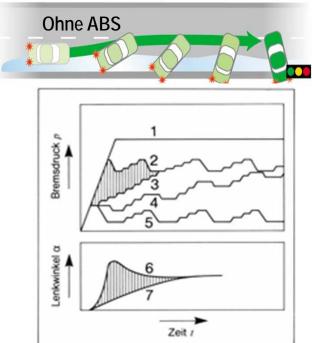

xx: VL, VR, HL, HR

Instabilitätsregler (-logik) mit Beschleunigungsschwellen

ABS-Bremsung: Asphalt trocken, $V_0 = 80 \text{km/h}$, pHZ_{max} = ~200bar

ABS-Regelkonzept: lernendes System




Schlupfkurven für verschiedene Fahrbahnen

Prinzip der Pulsstufenregelung

GMA - Giermomenten-Aufbauverzögerung

GMA: Bremsdruck-/Lenkwinkelverlauf

1 Hauptbremszylinderdruck p_{HZ}, 2 Bremsdruck p_{high} ohne GMA, 3 p_{high} mit GMA 1, 4 p_{high} mit GMA 2, 5 p_{low}, 6 Lenkwinkel α ohne GMA, 7 Lenkwinkel α mit GMA.

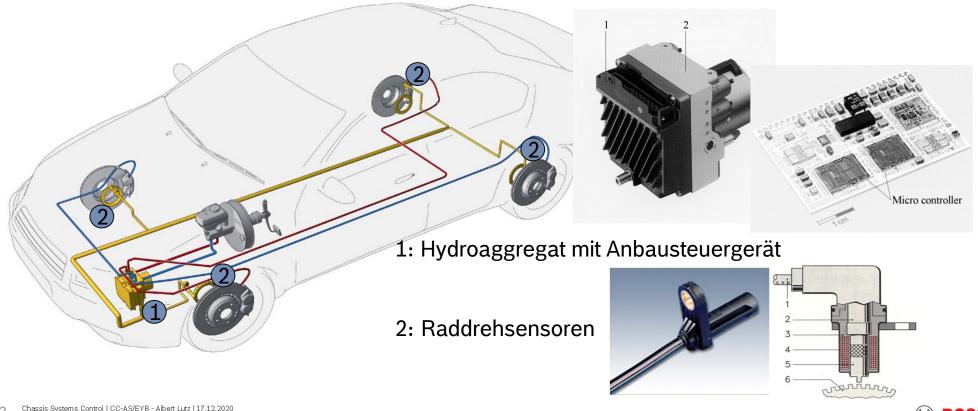
- > asymmetrischen Bremskräfte erzeugen ein Giermoment
- ➤ Dieses muß der Fahrer über die Lenkung ausgleichen
- ➤ Zur Verbesserung der Fahrzeugbeherrschbarkeit wird der Bremsdruck an dem High-Vorderrad gesteuert erhöht, sobald das Low-Vorderrad mit der Regelung anfängt.
- > Durch den Bremsdruckunterschied am linken und rechten Vorderrad entsteht ein Giermoment.
- Der Gradient mit dem das Giermoment zunimmt, hängt von dem Gradient ab, mit dem am High-Rad die gesteuerte Druckerhöhung stattfindet.
- ➤ Bei einem niedrigen Gradient bekommt der Fahrer mehr Zeit, sich auf das Giermoment einzustellen und gegenzulenken.
- > An der Hinterachse erfolgt eine Select-Low-Regelung
- Diese Funktion wird "Giermoment-Aufbauverzögerung" genannt (GMA).

MSR - Motorschleppmomentenregelung

Situation:

- > Fahrt auf niedererem Reibwert
- Fahrer geht, eingekuppelt, abrupt vom Gas

Ziel:


Fahrer behält die die Kontrolle über sein Fahrzeug beim Lastwechsel, obwohl die angetriebenen Räder fast blockieren.

Aufgabe MSR:

- > Die Motordrehzahl muss erhöht werden um Schlupf abzubauen (erst mit ASR 1987)
- > Anforderung zur Erhöhung des Motormoments an das Motorsteuergerät. Realisierung über die elektronische Drosselklappe (E-Gas).
- Sollschlupf wird soweit reduziert, dass genügend Seitenkraft an der angetriebenen Achse zur Verfügung steht mit der das Fahrzeug noch gut zu beherrschen ist.

ABS-System mit Komponenten

ABS-Sicherheitsschaltung & Diagnose

- Absicherung der gesamten elektronischen Signalaufbereitung und -logik u. Überwachungs-software durch elektronische <u>Steuergerät mit zwei redundant arbeitende Microcontroller</u> (parallel arbeitend mit gegenseitiger Überwachung)
- Alle Leitungen zu den Komponenten an der Peripherie (Sensoren, Magnetventile, Bremslichtschalter) werden kontinuierlich überwacht
- > Das Steuergerät überwacht außerdem den/die HW-Komponenten
- Nach jedem Fahrtantritt (V>6km/h) werden Magnetventile und Pumpenmotor kurzzeitig elektrisch erregt und die Rückmeldung der Endstufen abgefragt.
- > Sobald bei den zuvor beschriebenen Überwachungsmaßnahmen ein Fehler auftritt, wird das ABS abgeschaltet und die ABS-Kontrollleuchte angesteuert.
- > Spricht die Fehlererkennung an, kann nach einer Fehlerbewertung das ABS unmittelbar oder nach Ende der Bremsregelung abgeschaltet werden.
- > Zuvor wird der Fehler im Fehlerspeicher gespeichert.

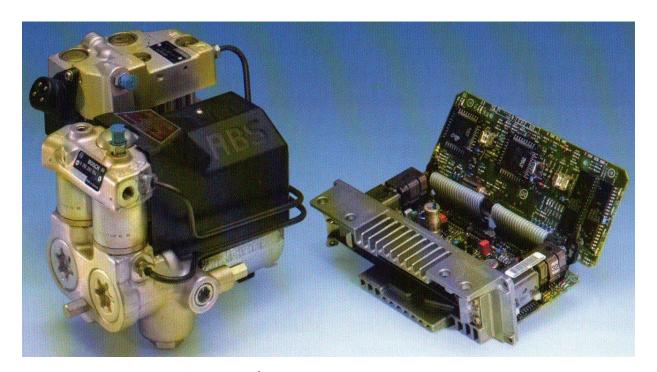
Anforderungen an ABS

Ein Fahrzeug bei dem die Räder blockieren ist nicht beherrschbar. ABS soll das Blockieren verhindern. (ABS-Anforderungen von Burckhardt, 1958):

- ➤ Die Bremsregelung soll Stabilität und Lenkbarkeit bei allen Fahrbahnbeschaffenheiten sicherstellen bei kleinen (5 20 bar/s) als auch großen (700 1500 bar/s) Druckgradient im Hauptbremszylinder
- > Die Reaktion in der Lenkung auf die Regelvorgänge soll so gering wie möglich sein
- > Auf homogener, ebener Fahrbahn muss das Fahrzeug während der Regelung und losgelassenem Lenkrad mit nur geringen Abweichungen geradeaus fahren
- > Oberhalb von 15 km/h darf auf homogener Fahrbahn mit μ > 0.1 bei beliebig hoher Pedalkraft und betätigungsgeschwindigkeit kein Rad blockieren
- Unterhalb 15 km/h ist ein kurzes Blockieren (< 200 ms) zulässig. Unterhalb der Messbarkeitsgrenze der Radgeschwindigkeit darf das Rad blockieren
- > Die Bremsregelung muss im gesamten Fahrgeschwindigkeitsbereich bis zum Stillstand funktionieren.
- > Die Bremsregelung muss sich Änderungen in der Fahrbahngriffigkeit sehr schnell anpassen.

Anforderungen an ABV gemäß ECE-Regelung 13

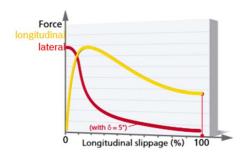
- \triangleright Der Wirkungsgrad ϵ muss mindestens 75% sein auf homogenen Fahrbahnen bei μ = 0,8; 0,3; leer; beladen
- > Stabiles Verhalten bei
 - − μ -Sprung 0,8 \rightarrow 0,3
 - − μ -Split-Test (0,8 / 0,3) Lenken ist erlaubt mit $\delta \le 120^\circ$ bei t ≤ 2 s, $\delta \le 240^\circ$ bei t > 2 s Anfangsgeschwindigkeit 50 km/h beim Aufbringen der vollen Bremskraft Fahrzeugverzögerung $z \ge 0,15 \cdot (\mu_H + 4 \cdot \mu_L)$ und $z \ge \mu_L$
- Blockierreihenfolge der Achsen beliebig
- \triangleright Bei μ -Sprung:
 - Negativ: Nur kurzzeitige Blockierphasen an den direkt geregelten R\u00e4dern
 - Positiv: Fahrzeugverzögerung entsprechend dem großen Reibbeiwert muss in annehmbarer Zeit erreicht werden
 - Kursabweichung sind nicht erlaubt


BREMSBASIERTE ASSISTENZFUNKTIONEN

FAHRDYNAMIKREGELSYSTEME

(ABS, ASR, ESP)

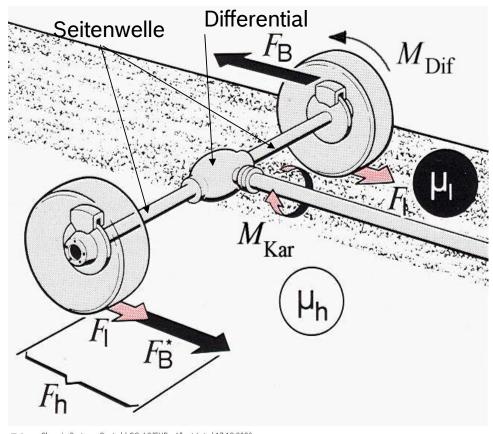
ROBERT BOSCH GMBH DIPL.-ING. ALBERT LUTZ


ASR2i (BOSCH 1987)

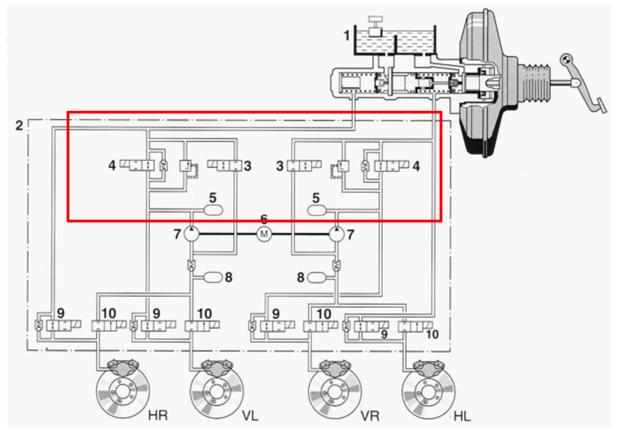
ABS/R8 (BOSCH 2001)

ASR: Optimierung der Antriebskraft

- Wenn ein Rad durchdreht, liegt die Kraftrichtung fest und kann vom Fahrer nicht beeinflusst werden. Wenn die Räder einer Achse durchdrehen, kann der Fahrer keinen Einfluss auf die Fahrzeugbewegung mehr nehmen: er verliert die Kontrolle über das Fahrzeug.
- Dreht nur ein angetriebenes Rad durch, reduziert sich die Antriebskraft des anderen angetriebenen Rades über das Differential automatisch auf die des durchdrehenden Rades. Somit ist auf µ-Split die Antriebskraft gering.



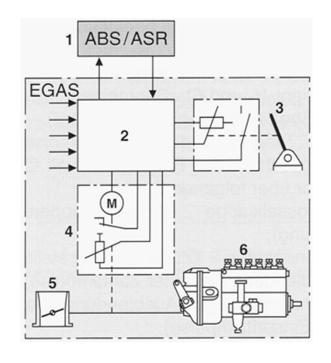
- **ASR-Ziel 1:** Fahrer behält beim Antrieb die Kontrolle über sein Fahrzeug.
- **ASR-Ziel 2:** die Reibwerte der angetriebenen Rädern voll auszunutzen.
- Momentan wird:
 - das erste Ziel durch den Motoreingriff realisiert → Stabilität
 - das zweite Ziel durch den aktiven Bremseingriff am Rad mit der rutschigeren Fahrbahn erreicht wird → Traktion



ASR: Optimierung der Antriebskraft

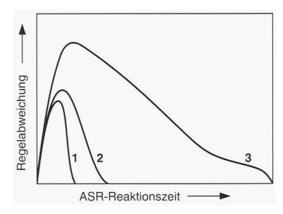
- Durch das Ausgleichsgetriebe der Achse (Differential) sind die Torsionsmomente der Seitenwellen und damit die Traktionskraft an beiden Rädern gleich.
- Die Traktion kann durch ein einseitiges Bremsmoment M_{Dif} (an dem Rad mit dem niedrigeren Fahrbahnreibwert μ_{I}) erfolgen ("Sperrmoment"). Die Kraft an der Bremse F_{B} erhöht die Antriebskraft am Rad mit dem hohen Fahrbahnreibwert um F_{B} *.
- Das maximal erlaubte Motordrehmoment entspricht dem Rad-Antriebsmoment welches maximal auf der Fläche mit dem hohen Reibwert μ_h übertragen werden kann.

ASR-Regelkonzept: Regelprinzip Bremseneingriff



ASR für Fzg. mit Fronttrieb

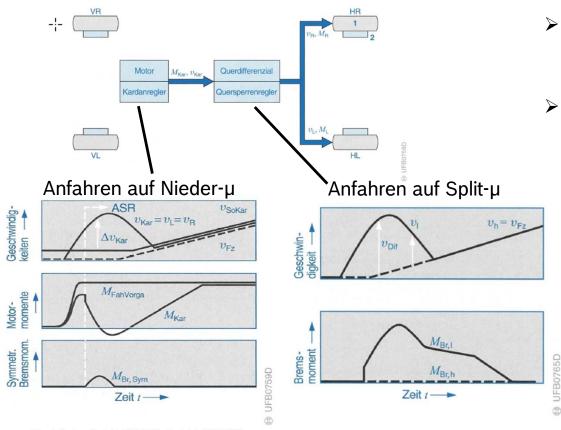
- 1: Hauptbremszylinder
- 2: Hydroaggregat
- 3: Ansaugventil
- 4: Umschaltventil
- 5: Dämpferkammer
- 6: Motor
- 7: Rückförderpumpe
- 8: Speicherkammer
- 9: Einlassventil
- 10: Auslassventil



ASR-Regelkonzept: Regelprinzip Motoreingriff

Komponenten:

- 1: ABS/ASR-Steuergerät (*M*_{SoMot})
- 2: EMS-Steuergerät ($M_{\text{mot.}}$)
- 3: Fahrpedal (M_{FV})
- 4: Stellmotor
- 5: Drosselklappe
- 6: o. Dieseleinspritzpumpe

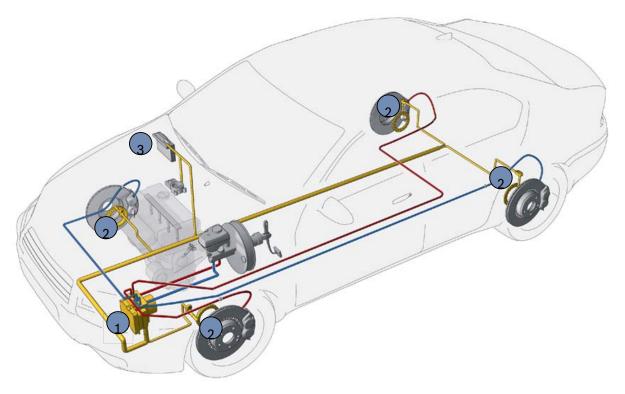


Dynamik der Eingriffe

- 1: Drosselklappen-/Radbremseneingriff
- 2: Drosselklappen-/Zündungseingriff
- 3: Drosselklappeneingriff

ASR-Regelkonzept: Regelprinzip

- Bei ASR kann die Eigenschaft, dass der Schlupf instabil ist $(\lambda > \lambda_0)$ ist, nicht für das Regelkonzept herangezogen werden.
- Im instabilen Bereich beschleunigt das Rad nicht sehr stark.
 - Drehträgheit des Antriebsstrangs ist groß
 - bei konstantem Drosselklappenwinkel nimmt das Antriebsmoment ab, wenn die Motordrehzahl zunimmt


Die Beschleunigung des Rades kann nicht als Indiz herangezogen werden, dass der Schlupf zu groß ist.

Aus diesem Grund ist ASR im Gegensatz zum ABS kein Beschleunigungsregler. Statt dessen wurde bei ASR der Schlupf als Regelgröße eingeführt.

> ASR: Schlupfregler

ASR-System mit Komponenten

- 1: Hydroaggregat für Bremseneingriffe mit Anbausteuergerät
- 2: Raddrehzahlsensoren
- 3: Kommunikation mit Motormanagement

Fahrdynamikregelsysteme ASR-Sicherheitsschaltung

Analog zu ABS

Anforderungen an ASR

Ein Fahrzeug bei dem die Räder durchdrehen ist nicht beherrschbar. ASR soll das Durchdrehen verhindern. (ASR-Anforderungen von Burckhardt, 1958):

Motoreingriff:

- Die Antriebsschlupfregelung muss bei jeder Betätigungsgeschwindigkeit des Gaspedals grundsätzlich das Durchdrehen der Antriebsräder, auf allen homogenen Fahrbahnreibbeiwerten, sicher verhindern.
- ➤ Die Regelung darf sofern die Motorschleppmomentregelung MSR außer Betracht bleibt nie mehr Gas geben, als vom Fahrer durch die Pedalstellung vorgegeben.
- > Bis zu der geforderten Größe ist die physikalisch mögliche Beschleunigung voll auszunutzen.
- > Die Priorität der Fahrstabilität muss mit der Fahrgeschwindigkeit zunehmen
- > Der Regeleingriff muss auch auf sehr glatter Fahrbahn so schnell erfolgen, dass ein Antriebsrad nur einen kleinen Bruchteil seines Umfangs durchrutscht.
- Bei abruptem Übergang von einer griffigen auf eine glatte Fahrbahn (negativer μ-Sprung Fall) muss die Umfangskraft an den Rädern so rasch reduziert werden, dass keine Instabilität des Fahrzeugs erkennbar ist.

Anforderungen an ASR

Motoreingriff:

- ➤ Beim Übergang von einer glatten auf eine griffige Straße muss bei entsprechender Gaspedalstellung das an die Räder weitergegebene Drehmoment so rasch zunehmen, dass die physikalisch mögliche Traktion voll ausgeschöpft wird.
- ➤ Gibt der Fahrer in einer Kurve zuviel Gas, soll die Regelung so schnell ansprechen, dass bei einem hinterradgetriebenen Fahrzeug das Heck nicht ausbricht bzw. ein vorderradgetriebenes nicht geradeausschiebt.
- > Es soll verhindert werden, dass das Fahrzeug beim Anfahren am Berg zurückrollt
- ➤ Ein Ausfall oder eine negative Beeinflussung der Regelung muss durch eine Sicherheitsschaltung sofort erkannt werden. Die Regelung ist abzuschalten und dies durch eine Warnleuchte anzuzeigen. Bei einem Defekt sollte ein Notbetrieb mit mindestens 70% der normalen Höchstgeschwindigkeit möglich sein.

Anforderungen an ASR

Bremseingriff

- Bei μ-Split Fahrbahnen ist das Antriebsrad auf der glatten Seite am Durchdrehen zu hindern. Die Übertragungsfähigkeit des anderen soll voll ausgenutzt werden, um eine optimale Traktion zu erreichen.
- ➤ Die Regelung muss so schnell arbeiten, dass sie auch bei dynamischer Entlastung eines Rades (z.B. bei Kurvenfahrt) in der angegebenen Weise eingreifen kann.
- Für das Wegfahren in tiefem Schnee soll bei Verwendung von Schneeketten auf einen größeren Schlupf umgeschaltet werden. Hierfür muss die Regelung durch einen von Hand zu betätigenden Schalter programmierbar sein (Schneekettenschalter).

Allgemein

- ➤ Beim Anfahren muss die Abstimmung zwischen Fahrzeuggeschwindigkeit und Radschlupf so sein, dass das Rad die Fahrbahnoberfläche nicht "poliert" bzw. dass das Rad sich bei losem Untergrund nicht "eingräbt"
- > Begrenzung des Reifenverschleißes und der Belastung des Differentials

